Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In cases of viral pneumonia where influenza A or B are thought to be causative agents, patients who are seen within 48 hours of symptom onset may benefit from treatment with oseltamivir or zanamivir. Respiratory syncytial virus (RSV) has no direct acting treatments, but ribavirin in indicated for severe cases. Herpes simplex virus and varicella-zoster virus infections are usually treated with aciclovir, whilst ganciclovir is used to treat cytomegalovirus. There is no known efficacious treatment for pneumonia caused by SARS coronavirus, MERS coronavirus, adenovirus, hantavirus, or parainfluenza. Care is largely supportive.
Antibiotics are ineffective, as SARS is a viral disease. Treatment of SARS is largely supportive with antipyretics, supplemental oxygen and mechanical ventilation as needed.
People with SARS must be isolated, preferably in negative pressure rooms, with complete barrier nursing precautions taken for any necessary contact with these patients.
Some of the more serious damage caused by SARS may be due to the body's own immune system reacting in what is known as cytokine storm.
As of 2017, there is no cure or protective vaccine for SARS that has been shown to be both safe and effective in humans. The identification and development of novel vaccines and medicines to treat SARS is a priority for governments and public health agencies around the world. MassBiologics, a non-profit organization engaged in the discovery, development and manufacturing of biologic therapies, is cooperating with researchers at NIH and the CDC developed a monoclonal antibody therapy that demonstrated efficacy in animal models.
No specific treatment is available, but antibiotics can be used to prevent secondary infections.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine; plus various combinations).
Biosecurity protocols including adequate isolation, disinfection are important in controlling the spread of the disease.
Antibiotics are given to treat any bacterial infection present. Cough suppressants are used if the cough is not productive. NSAIDs are often given to reduce fever and upper respiratory inflammation. Prevention is by vaccinating for canine adenovirus, distemper, parainfluenza, and "Bordetella". In kennels, the best prevention is to keep all the cages disinfected. In some cases, such as "doggie daycares" or nontraditional playcare-type boarding environments, it is usually not a cleaning or disinfecting issue, but rather an airborne issue, as the dogs are in contact with each other's saliva and breath. Although most kennels require proof of vaccination, the vaccination is not a fail-safe preventative. Just like human influenza, even after receiving the vaccination, a dog can still contract mutated strains or less severe cases.
The two classes of antiviral drugs used against influenza are neuraminidase inhibitors (oseltamivir and zanamivir) and M2 protein inhibitors (adamantane derivatives).
There is no vaccine for SARS to date. Isolation and quarantine remain the most effective means to prevent the spread of SARS. Other preventative measures include:
- Handwashing
- Disinfection of surfaces for fomites
- Wearing a surgical mask
- Avoiding contact with bodily fluids
- Washing the personal items of someone with SARS in hot, soapy water (eating utensils, dishes, bedding, etc.)
- Keeping children with symptoms home from school
Many public health interventions were taken to help control the spread of the disease; which is mainly spread through respiratory droplets in the air. These interventions included earlier detection of the disease, isolation of people who are infected, droplet and contact precautions, and the use of personal protective equipment (PPE); including masks and isolation gowns. A screening process was also put in place at airports to monitor air travel to and from affected countries. Although no cases have been identified since 2004, the CDC is still working to make federal and local rapid response guidelines and recommendations in the event of a reappearance of the virus.
Cats can be protected from H5N1 if they are given a vaccination, as mentioned above. However, it was also found that cats can still shed some of the virus but in low numbers.
If a cat is exhibiting symptoms, they should be put into isolation and kept indoors. Then they should be taken to a vet to get tested for the presence of H5N1. If there is a possibility that the cat has Avian Influenza, then there should be extra care when handling the cat. Some of the precautions include avoiding all direct contact with the cat by wearing gloves, masks, and goggles. Whatever surfaces the cat comes in contact with should be disinfected with standard household cleaners.
They have given tigers an antiviral treatment of Oseltamivir with a dose of 75 mg/60 kg two times a day. The specific dosage was extrapolated from human data, but there hasn't been any data to suggest protection. As with many antiviral treatments, the dosage depends on the species.
Overall the benefits of neuraminidase inhibitors in those who are otherwise healthy do not appear to be greater than the risks. There does not appear to be any benefit in those with other health problems. In those believed to have the flu, they decreased the length of time symptoms were present by slightly less than a day but did not appear to affect the risk of complications such as needing hospitalization or pneumonia. Previous to 2013 the benefits were unclear as the manufacturer (Roche) refused to release trial data for independent analysis. Increasingly prevalent resistance to neuraminidase inhibitors has led to researchers to seek alternative antiviral drugs with different mechanisms of action.
The infection is treated with antibiotics. Tetracyclines and chloramphenicol are the drugs of choice for treating patients with psittacosis. Most persons respond to oral therapy doxycycline, tetracycline hydrochloride, or chloramphenicol palmitate. For initial treatment of severely ill patients, doxycycline hyclate may be administered intravenously. Remission of symptoms usually is evident within 48–72 hours. However, relapse can occur, and treatment must continue for at least 10–14 days after fever abates.
To increase their effectiveness, vaccines should be administered as soon as possible after a dog enters a high-risk area, such as a shelter. 10 to 14 days are required for partial immunity to develop. Administration of B. bronchiseptica and canine-parainfluenza vaccines may then be continued routinely, especially during outbreaks of kennel cough. There are several methods of administration, including parenteral and intranasal. However, the intranasal method has been recommended when exposure is imminent, due to a more rapid and localized protection. Several intranasal vaccines have been developed that contain canine adenovirus in addition to B bronchiseptica and canine-parainfluenza virus antigens. Studies have thus far not been able to determine which formula of vaccination is the most efficient. Adverse effects of vaccinations are mild, but the most common effect observed up to 30 days after administration is nasal discharge. Vaccinations are not always effective. In one study it was found that 43.3% of all dogs in the study population with respiratory disease had in fact been vaccinated.
Neither the combination of antivirals and interferons (ribavirin + interferon alfa-2a or interferon alfa-2b) nor corticosteroids improved outcomes.
When rhesus macaques were given interferon-α2b and ribavirin and exposed to MERS, they developed less pneumonia than control animals. Five critically ill people with MERS in Saudi Arabia with ARDS and on ventilators were given interferon-α2b and ribavirin but all ended up dying of the disease. The treatment was started late in their disease (a mean of 19 days after hospital admission) and they had already failed trials of steroids so it remains to be seen whether it may have benefit earlier in the course of disease. Another proposed therapy is inhibition of viral protease or kinase enzymes. Researchers are investigating a number of ways to combat the outbreak of Middle East respiratory syndrome coronavirus, including using interferon, chloroquine, chlorpromazine, loperamide, and lopinavir, as well as other agents such as mycophenolic acid and camostat.
There is no cure for EEE. Treatment consists of corticosteroids, anticonvulsants, and supportive measures (treating symptoms) such as intravenous fluids, tracheal intubation, and antipyretics. About four percent of humans known to be infected develop symptoms, with a total of about six cases per year in the US. A third of these cases die, and many survivors suffer permanent brain damage.
The current medical treatments for aggressive invasive aspergillosis include voriconazole and liposomal amphotericin B in combination with surgical debridement.
For the less aggressive allergic bronchopulmonary aspergillosis findings suggest the use of oral steroids for a prolonged period of time, preferably for 6–9 months in allergic aspergillosis of the lungs. Itraconazole is given with the steroids, as it is considered to have a "steroid sparing" effect, causing the steroids to be more effective, allowing a lower dose.,
Other drugs used, such as amphotericin B, caspofungin (in combination therapy only), flucytosine (in combination therapy only), or itraconazole,
are used to treat this fungal infection. However, a growing proportion of infections are resistant to the triazoles. "A. fumigatus", the most commonly infecting species, is intrinsically resistant to fluconazole.
As of April 2020, there is no specific treatment for COVID-19. Research is, however, ongoing. For symptoms, some medical professionals recommend paracetamol (acetaminophen) over ibuprofen for first-line use. The WHO does not oppose the use of non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen for symptoms, and the FDA says currently there is no evidence that NSAIDs worsen COVID-19 symptoms.
While theoretical concerns have been raised about ACE inhibitors and angiotensin receptor blockers, as of 19 March 2020, these are not sufficient to justify stopping these medications. Steroids, such as methylprednisolone, are not recommended unless the disease is complicated by acute respiratory distress syndrome.
Medications to prevent blood clotting have been suggested for treatment, and anticoagulant therapy with low molecular weight heparin appears to be associated with better outcomes in severe COVID‐19 showing signs of coagulopathy (elevated D-dimer).
Prevention of aspergillosis involves a reduction of mold exposure via environmental infection-control. Anti-fungal prophylaxis can be given to high-risk patients. Posaconazole is often given as prophylaxis in severely immunocompromised patients.
The disease can be prevented in horses with the use of vaccinations. These vaccinations are usually given together with vaccinations for other diseases, most commonly WEE, VEE, and tetanus. Most vaccinations for EEE consist of the killed virus. For humans there is no vaccine for EEE so prevention involves reducing the risk of exposure. Using repellent, wearing protective clothing, and reducing the amount of standing water is the best means for prevention
Research into potential treatments started in January 2020, and several antiviral drugs are in clinical trials. Remdesivir appears to be the most promising. Although new medications may take until 2021 to develop, several of the medications being tested are already approved for other uses or are already in advanced testing. Antiviral medication may be tried in people with severe disease. The WHO recommended volunteers take part in trials of the effectiveness and safety of potential treatments.
The FDA has granted temporary authorisation to convalescent plasma as an experimental treatment in cases where the person's life is seriously or immediately threatened. It has not undergone the clinical studies needed to show it is safe and effective for the disease.
The best prevention against viral pneumonia is vaccination against influenza, adenovirus, chickenpox, herpes zoster, measles, and rubella.
Prophylaxis by vaccination, as well as preventive measures like protective clothing, tick control, and mosquito control are advised. The vaccine for KFDV consists of formalin-inactivated KFDV. The vaccine has a 62.4% effectiveness rate for individuals who receive two doses. For individuals who receive an additional dose, the effectiveness increases to 82.9%. Specific treatments are not available.
There is currently no specific treatment for the virus. A vaccine is available, but only experimentally. It has not been released to the public due to the risk it poses to already exposed birds.
Therapeutic intervention is limited to treating secondary infections. The individual bird can sometimes recover, but this is rare. If only the feathers are affected and the bird suffers no other symptoms, it can usually experience an acceptable quality of life. But if the bird's beak or nails are affected, veterinarians will recommend euthanasia.
The management of the disease lies thus mostly in prevention. Every new bird that enters a pen with other birds should be quarantined first and be tested for BFDV. Birds which are known carriers should not be introduced into new pens, especially not if those contain young birds.
The most commonly available antiviral drugs for treating FIP are either feline recombinant interferon omega (Virbagen Omega, Virbac) or human interferon. Since the action of interferon is species-specific, feline interferon is more efficacious than human interferon.
An experimental antiviral drug called GC 376 was used in a field trial of 20 cats: 7 cats went into remission, 13 cats responded initially but relapsed and were euthanazed. This drug is not yet commercially available: watch the University of California Davis website for progress updates.
Treatment of bronchiolitis is usually focused on the symptoms instead of the infection itself since the infection will run its course and complications are typically from the symptoms themselves. Without active treatment half of cases will go away in 13 days and 90% in three weeks.
Measures for which the evidence is unclear include nebulized epinephrine, nasal suctioning, and nebulized hypertonic saline. Treatments which the evidence does not support include salbutamol, steroids, antibiotics, antivirals, chest physiotherapy, and cool mist.
Most people recover from West Nile virus without treatment. No specific treatment is available for WNV infection. In mild cases over the counter pain relievers can help ease mild headaches and muscle aches in adults. In severe cases treatment consists of supportive care that often involves hospitalization, intravenous fluids, pain medication, respiratory support, and prevention of secondary infections.
Currently other medications do not yet have evidence to support their use. Ribavirin is an antiviral drug which does not appear to be effective for bronchiolitis. Antibiotics are often given in case of a bacterial infection complicating bronchiolitis, but have no effect on the underlying viral infection. Corticosteroids have no proven benefit in bronchiolitis treatment and are not advised. DNAse has not been found to be effective.
There is no specific treatment for the condition.
Control may rely on boosting bird immunity, preventing group mixing and faecal spreading.