Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
As of March 2020, it was unknown if past infection provides effective and long-term immunity in people who recover from the disease. Immunity is seen as likely, based on the behaviour of other coronaviruses, but cases in which recovery from COVID-19 have been followed by positive tests for coronavirus at a later date have been reported. These cases are believed to be worsening of a lingering infection rather than re-infection.
Numerous factors have been suggested and linked to a higher risk of acquiring the infection, inclusive of malnutrition, vitamin A deficiency, absence of breastfeeding during the early stages of life, environmental pollution and overcrowding.
Dogs will typically recover from kennel cough within a few weeks. However, secondary infections could lead to complications that could do more harm than the disease itself. Several opportunistic invaders have been recovered from the respiratory tracts of dogs with kennel cough, including Streptococcus, Pasteurella, Pseudomonas, and various coliforms. These bacteria have the potential to cause pneumonia or sepsis, which drastically increase the severity of the disease. These complications are evident in thoracic radiographic examinations. Findings will be mild in animals affected only by kennel cough, while those with complications may have evidence of segmental atelectasis and other severe side effects.
Mortality caused by HPIVs in developed regions of the world remains rare. Where mortality has occurred, it is principally in the three core risk groups (very young, elderly and immuno-compromised). Long term changes can however be associated with airway remodelling and are believed to be a significant cause of morbidity. The exact associations between HPIVs and diseases such as chronic obstructive pulmonary disease (COPD) are still being investigated.
In developing regions of the world, the highest risk group in terms of mortality remains pre-school children. Mortality may be as a consequence of primary viral infection or secondary problems such as bacterial infection. Predispositions, such as malnutrition and other deficiencies may further elevate the chances of mortality associated with infection.
Overall, LRI's cause approximately 25–30% of total deaths in pre-school children in the developing world. HPIVs is believed to be associated with 10% of all LRI cases, thus remaining a significant cause of mortality.
There has been evidence of limited, but not sustained spread of MERS-CoV from person to person, both in households as well as in health care settings like hospitals. Most transmission has occurred "in the circumstances of close contact with severely ill persons in healthcare or household settings" and there is no evidence of transmission from asymptomatic cases. Cluster sizes have ranged from 1 to 26 people, with an average of 2.7.
The impact of the pandemic and its mortality rate are different for men and women. Mortality is higher in men in studies conducted in China and Italy. The highest risk for men is in their 50s, with the gap between men and women closing only at 90. In China, the death rate was 2.8 percent for men and 1.7 percent for women. The exact reasons for this sex-difference is not known, but genetic and behavioural factors could be a reason. Sex-based immunological differences, lesser prevalence of smoking in women and men developing co-morbid conditions such as hypertension at a younger age than women could have contributed to the higher mortality in men. In Europe, 57% of the infected individuals were men and 72% of those died with COVID-19 were men. As of April 2020, the US government is not tracking sex-related data of COVID-19 infections. Research has shown that viral illnesses like Ebola, HIV, influenza and SARS affect men and women differently. A higher percentage of health workers, particularly nurses, are women, and they have a higher chance of being exposed to the virus. School closures, lockdowns and reduced access to healthcare following the 2019–20 coronavirus pandemic may deferentially affect the genders and possibly exaggerate existing gender disparity.
There is no vaccine for SARS to date. Isolation and quarantine remain the most effective means to prevent the spread of SARS. Other preventative measures include:
- Handwashing
- Disinfection of surfaces for fomites
- Wearing a surgical mask
- Avoiding contact with bodily fluids
- Washing the personal items of someone with SARS in hot, soapy water (eating utensils, dishes, bedding, etc.)
- Keeping children with symptoms home from school
Many public health interventions were taken to help control the spread of the disease; which is mainly spread through respiratory droplets in the air. These interventions included earlier detection of the disease, isolation of people who are infected, droplet and contact precautions, and the use of personal protective equipment (PPE); including masks and isolation gowns. A screening process was also put in place at airports to monitor air travel to and from affected countries. Although no cases have been identified since 2004, the CDC is still working to make federal and local rapid response guidelines and recommendations in the event of a reappearance of the virus.
A study performed between 2010 and 2013, in which the incidence of MERS was evaluated in 310 dromedary camels, revealed high titers of neutralizing antibodies to MERS-CoV in the blood serum of these animals. A further study sequenced MERS-CoV from nasal swabs of dromedary camels in Saudi Arabia and found they had sequences identical to previously sequenced human isolates. Some individual camels were also found to have more than one genomic variant in their nasopharynx. There is also a report of a Saudi Arabian man who became ill seven days after applying topical medicine to the noses of several sick camels and later he and one of the camels were found to have identical strains of MERS-CoV. It is still unclear how the virus is transmitted from camels to humans. The World Health Organization advises avoiding contact with camels and to eat only fully cooked camel meat, pasteurized camel milk, and to avoid drinking camel urine. Camel urine is considered a medicine for various illnesses in the Middle East. The Saudi Ministry of Agriculture has advised people to avoid contact with camels or wear breathing masks when around them. In response "some people have refused to listen to the government's advice" and kiss their camels in defiance of their government's advice.
Viral infections such as canine parainfluenza or canine coronavirus are only shed for roughly 1 week following recovery; however, respiratory infections involving "Bordetella bronchiseptica" can be transmissible for several weeks longer. While there was early evidence to suggest that "B. bronchiseptica" could be shed for many months post-infection, a more recent report places detectable nasal and pharyngeal levels of "B. bronchiseptica" in 45.6% of all clinically healthy dogs. This has potentially expanded the vector from currently or recently infected dogs to half the dog population as carriers. To put the relative levels of shedding bacteria into perspective, a study analyzing the shedding kinetics of "B. bronchiseptica" presents the highest levels of bacterial shedding one week post-exposure, with an order of magnitude decrease in shedding observed every week. This projection places negligible levels of shedding to be expected 6 weeks post-exposure (or ~5 weeks post-onset of symptoms). Dogs which had been administered intranasal vaccine 4 weeks prior to virulent "B. bronchiseptica" challenge displayed little to no bacterial shedding within 3 weeks of exposure to the virulent strain.
Several consequent reports from China on some recovered SARS patients showed severe long-time sequelae exist. The most typical diseases include, among other things, pulmonary fibrosis, osteoporosis, and femoral necrosis, which have led to the complete loss of working ability or even self-care ability of these cases. As a result of quarantine procedures, some of the post-SARS patients have been documented suffering from posttraumatic stress disorder (PTSD) and major depressive disorder.
The traditional theory is that a cold can be "caught" by prolonged exposure to cold weather such as rain or winter conditions, which is how the disease got its name. Some of the viruses that cause the common colds are seasonal, occurring more frequently during cold or wet weather. The reason for the seasonality has not been conclusively determined. Possible explanations may include cold temperature-induced changes in the respiratory system, decreased immune response, and low humidity causing an increase in viral transmission rates, perhaps due to dry air allowing small viral droplets to disperse farther and stay in the air longer.
The apparent seasonality may also be due to social factors, such as people spending more time indoors, near infected people, and specifically children at school. There is some controversy over the role of low body temperature as a risk factor for the common cold; the majority of the evidence suggests that it may result in greater susceptibility to infection.
The best prevention against viral pneumonia is vaccination against influenza, adenovirus, chickenpox, herpes zoster, measles, and rubella.
The common cold virus is typically transmitted via airborne droplets (aerosols), direct contact with infected nasal secretions, or fomites (contaminated objects). Which of these routes is of primary importance has not been determined; however, hand-to-hand and hand-to-surface-to-hand contact seems of more importance than transmission via aerosols. The viruses may survive for prolonged periods in the environment (over 18 hours for rhinoviruses) and can be picked up by people's hands and subsequently carried to their eyes or nose where infection occurs. Transmission is common in daycare and at school due to the proximity of many children with little immunity and frequently poor hygiene. These infections are then brought home to other members of the family. There is no evidence that recirculated air during commercial flight is a method of transmission. People sitting in close proximity appear to be at greater risk of infection.
Rhinovirus-caused colds are most infectious during the first three days of symptoms; they are much less infectious afterwards.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus strain that causes coronavirus disease 2019 (COVID-19), a respiratory illness. It is colloquially known as the coronavirus, and was previously referred to by its provisional name 2019 novel coronavirus (2019-nCoV). SARS-CoV-2 is a positive-sense single-stranded RNA virus. It is contagious in humans, and the World Health Organization (WHO) has designated the ongoing pandemic of COVID-19 a Public Health Emergency of International Concern. Because the strain was first discovered in Wuhan, China, it is sometimes referred to as "Wuhan virus" or "Wuhan coronavirus". Since the WHO discourages the use of names based on locations such as MERS, and to avoid confusion with the disease SARS, it sometimes refers to SARS-CoV-2 as "the COVID-19 virus" in public health communications. The general public frequently calls both SARS-CoV-2 and the disease it causes "coronavirus", but scientists typically use more precise terminology.
Taxonomically, SARS-CoV-2 is a strain of Severe acute respiratory syndrome-related coronavirus (SARSr-CoV). It is believed to have zoonotic origins and has close genetic similarity to bat coronaviruses, suggesting it emerged from a bat-borne virus. An intermediate animal reservoir such as a pangolin is also thought to be involved in its introduction to humans. The virus shows little genetic diversity, indicating that the spillover event introducing SARS-CoV-2 to humans is likely to have occurred in late 2019.
Epidemiological studies estimate each infection results in 1.4 to 3.9 new ones when no members of the community are immune and no preventive measures taken. The virus is primarily spread between people through close contact and via respiratory droplets produced from coughs or sneezes. It mainly enters human cells by binding to the receptor angiotensin converting enzyme 2 (ACE2).
No specific treatment is available, but antibiotics can be used to prevent secondary infections.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine; plus various combinations).
Biosecurity protocols including adequate isolation, disinfection are important in controlling the spread of the disease.
Viral pneumonia occurs in about 200 million people a year which includes about 100 million children and 100 million adults.
Non-specific effects are frequently different in males and females. There are accumulating data illustrating that males and females may respond differently to vaccination, both in terms of the quality and quantity of the immune response. If true, then we must consider whether vaccination schedules should differ for males and females, or as has been suggested "should we treat the sexes differently in order to treat them equally?"
Human-to-human transmission of SARS-CoV-2 has been confirmed during the 2019–20 coronavirus pandemic. Transmission occurs primarily via respiratory droplets from coughs and sneezes within a range of about 1.8 metres (6 ft). Indirect contact via contaminated surfaces is another possible cause of infection. Preliminary research indicates that the virus may remain viable on plastic and steel for up to three days, but does not survive on cardboard for more than one day or on copper for more than four hours; the virus is inactivated by soap, which destabilises its lipid bilayer. Viral RNA has also been found in stool samples from infected individuals.
The degree to which the virus is infectious during the incubation period is uncertain, but research has indicated that the pharynx reaches peak viral load approximately four days after infection. On 1 February 2020, the World Health Organization (WHO) indicated that "transmission from asymptomatic cases is likely not a major driver of transmission". However, an epidemiological model of the beginning of the outbreak in China suggested that "pre-symptomatic shedding may be typical among documented infections" and that subclinical infections may have been the source of a majority of infections.
There is some evidence of human-to-animal transmission of SARS-CoV-2, including examples in felids. Some institutions have advised those infected with SARS-CoV-2 to restrict contact with animals.
Standard titer measles vaccine is recommended at 9 months of age in low-income countries where measles infection is endemic and often fatal. Many observational studies have shown that measles-vaccinated children have substantially lower mortality than can be explained by the prevention of measles-related deaths. Many of these observational studies were natural experiments, such as studies comparing the mortality before and after the introduction of measles vaccine and other studies where logistical factors rather than maternal choice determined whether a child was vaccinated or not.
These findings were later supported in randomized trials from 2003 to 2009 in Guinea-Bissau. An intervention group of children given standard titer measles vaccine at 4.5 and 9 month of age had a 30% reduction in all-cause mortality compared to the children in the control group, which were only vaccinated against measles at 9 month of age.
In a recent WHO-commissioned review based on four randomized trials and 18 observational studies, it was concluded that "There was consistent evidence of a beneficial effect of measles vaccine, although all observational studies were assessed as being at risk of bias and the GRADE rating was of low confidence. There was an apparent difference between the effect in girls and boys, with girls benefitting more from measles vaccination", and furthermore "estimated effects are in the region of a halving of mortality risk" and "if these effects are real then they are not fully explained by deaths that were established as due to measles". Based on the evidence, the WHO's Strategic Advisory Group of Experts on Immunization concluded that "the non-specific effects on all-cause mortality warrant further research".
Vaccination helps prevent bronchopneumonia, mostly against influenza viruses, adenoviruses, measles, rubella, streptococcus pneumoniae, haemophilus influenzae, diphtheria, bacillus anthracis, chickenpox, and bordetella pertussis.
Lower respiratory infectious disease is the fifth-leading cause of death and the combined leading infectious cause of death, being responsible for 2·74 million deaths worldwide. This is generally similar to estimates in the 2010 Global Burden of Disease study.
This total only accounts for "Streptococcus pneumoniae" and "Haemophilus Influenzae" infections and does not account for atypical or nosocomial causes of lower respiratory disease, therefore underestimating total disease burden.
Avian infectious bronchitis (IB) is an acute and highly contagious respiratory disease of chickens. The disease is caused by avian infectious bronchitis virus (IBV), a coronavirus, and characterized by respiratory signs including gasping, coughing, sneezing, tracheal rales, and nasal discharge. In young chickens, severe respiratory distress may occur. In layers, respiratory distress, nephritis, decrease in egg production, and loss of internal (watery egg white) and external (fragile, soft, irregular or rough shells, shell-less) egg quality are reported.
Vaccination
There is one intra-nasal FIP vaccine available: its use is controversial but in an independent study the authors concluded that vaccination can protect cats with no or low FCoV antibody titres and that in some cats vaccine failure was probably due to pre-existing infection.
Prevention of FCoV infection, and therefore FIP, in kittens
Kittens are protected from infection by maternally derived antibody until it wanes, usually around 5–7 weeks of age, therefore it is possible to prevent infection of kittens by removing them from sources of infection. However, FCoV is a very contagious virus and such prevention does require rigorous hygiene.
Bronchiolitis typically affects infants and children younger than two years, principally during the fall and winter . Bronchiolitis hospitalization has a peak incidence between two and six months of age and remains a significant cause of respiratory disease during the first two years of life. It is a leading cause of hospitalization in infants and young children.
Feline infectious peritonitis (FIP) is the name given to an uncommon, but usually fatal, aberrant immune response to infection with feline coronavirus (FCoV).