Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Yellow-band disease (similar to Yellow Blotch disease) is a coral disease that attacks colonies of coral at a time when coral is already under stress from pollution, overfishing, and climate change. It is characterized by large blotches or patches of bleached, yellowed tissue on Caribbean scleractinian corals.
Yellow-band disease is a bacterial infection that spreads over coral, causing the discolored bands of pale-yellow or white lesions along the surface of an infected coral colony. The lesions are the locations where the bacteria have killed the coral’s symbiotic photosynthetic algae, called zooxanthellae which are a major energy source for the coral. This cellular damage and the loss of its major energy source cause the coral to starve, and usually cause coral death. There is evidence that climate change could be worsening the disease.
Black band disease is a coral disease in which corals develop a black band. It is characterized by complete tissue degradation due to a pathogenic microbial consortium. The mat is present between apparently healthy coral tissue and freshly exposed coral skeleton.
White band disease (Acroporid white syndrome) is a coral disease that affects acroporid corals and is distinguishable by the white band of dead coral tissue that it forms. The disease completely destroys the coral tissue of Caribbean acroporid corals, specifically elkhorn coral ("Acropora palmata") and staghorn coral ("A. cervicornis"). The disease exhibits a pronounced division between the remaining coral tissue and the exposed coral skeleton. These symptoms are similar to white plague, except that white band disease is only found on acroporid corals, and white plague has not been found on any acroporid corals. It is part of a class of similar disease known as "white syndromes", many of which may be linked to species of "Vibrio" bacteria. While the pathogen for this disease has not been identified, "Vibrio carchariae" may be one of its factors. The degradation of coral tissue usually begins at the base of the coral, working its way up to the branch tips, but it can begin in the middle of a branch.
Coral diseases, comprising the diseases that affect corals, injure the living tissues and often result in the death of part or the whole of the colony. These diseases have been occurring more frequently in the twenty-first century as conditions become more stressful for many shallow-water corals. The pathogens causing the diseases include bacteria, fungi and protozoa, but it is not always possible to identify the pathogen involved.
Black band disease was first observed on reefs in Belize in 1973 by A. Antonius, who described the pathogen he found infecting corals as "Oscillatoria membranacea", one of the cyanobacteria. The band color may be blackish brown to red depending on the vertical position of a cyanobacterial population associated with the band. The vertical position is based on a light intensity-dependent photic response of the cyanobacterial filaments, and the color (due to the cyanobacterial pigment phycoerythrin) is dependent on the thickness of the band. The band is approximately thick and ranges in width from to White specks may be present on surface, at times forming dense white patches. The pathogenic microbial mat moves across coral colonies at rates from to a day. Tissue death is caused by exposure to an hypoxic, sulfide-rich microenvironment associated with the base of the band.
Wheat yellow rust ("Puccinia striiformis" f.sp. "tritici"), also known as stripe rust, is one of the three wheat rust diseases principally found in wheat grown in cooler environments. Such locations are generally associated with northern latitudes or cooler seasons.
Muscardine is a disease of insects. It is caused by many species of entomopathogenic fungus. Many muscardines are known for affecting silkworms. Muscardine may also be called calcino.
While studying muscardine in silkworms in the 19th century, Agostino Bassi found that the causal agent was a fungus. This was the first demonstration of the germ theory of disease, the first time a microorganism was recognized as an animal pathogen.
There are many types of muscardine. They are often named for the color of the conidial layer each fungus leaves on its host.
Necrotic ring spot is a common disease of turf caused by soil borne fungi (Ophiosphaerella korrae) that mainly infects roots (4). It is an important disease as it destroys the appearance of turfgrasses on park, playing fields and golf courses. Necrotic Ring Spot is caused by a fungal pathogen that is an ascomycete that produces ascospores in an ascocarp (6). They survive over winter, or any unfavorable condition as sclerotia. Most infection occurs in spring and fall when the temperature is about 13 to 28°C (5). The primary hosts of this disease are cool-season grasses such as Kentucky bluegrass and annual bluegrass (6). Once turf is infected with "O. korrae", it kills turf roots and crowns. Symptoms of the disease are quite noticeable since they appear as large yellow ring-shaped patches of dead turf. Management of the disease is often uneasy and requires application of multiple controls. The disease can be controlled by many different kind of controls including chemicals and cultural.
As R.P. Singh, J. Huerta-Espino, and A.P. Roelfs say in their (undated) comprehensive review of literature on the wheat rusts for UN FAO:
"Although Gadd first described stripe rust of wheat in 1777, it was not until 1896 that Eriksson and Henning (1896) showed that stripe rust resulted from a separate pathogen, which they named P. glumarum. In 1953, Hylander et al. (1953) revived the name P. striiformis."
Coral has a symbiotic relationship with zooxanthellae that provide the coral glucose, glycerol, and amino acids. Under certain water conditions, like fluctuating temperatures and increased nitrogenous waste, corals will appear stressed. Also, these conditions allow for bacteria to grow inside the coral and compete with zooxanthellae. The bacteria produces the characteristic pale yellow lesions and eventually kills the zooxanthellae by impairing its mitosis and its ability to carry out photosynthesis. Yellow-band disease is found on coral reefs in the Caribbean.
White band disease causes the affected coral tissue to decorticate off the skeleton in a white uniform band for which the disease was given its name. The band, which can range from a few millimeters to 10 centimeters wide, typically works its way from the base of the coral colony up to the coral branch tips. The band progresses up the coral branch at an approximate rate of 5 millimeters per day, causing tissue loss as it works its way to the branch tips. After the tissue is lost, the bare skeleton of the coral may later by colonized by filamentous algae.
There are two variants of white band disease, type I and type II. In Type I of white band disease, the tissue remaining on the coral branch shows no sign of coral bleaching, although the affected colony may appear lighter in color overall. However, a variant of white band disease, known simply as white band disease Type II, which was found on Staghorn colonies near the Bahamas, does produce a margin of bleached tissue before it is lost. Type II of white band disease can be mistaken for coral bleaching. By examining the remaining living coral tissue for bleaching, one can delineate which type of the disease affects a given coral.
Skeletal eroding band (SEB) is a disease of corals that appears as a black or dark gray band that slowly advances over corals, leaving a spotted region of dead coral in its wake. It is the most common disease of corals in the Indian and Pacific Oceans, and is also found in the Red Sea.
So far one agent has been clearly identified, the ciliate "Halofolliculina corallasia". This makes SEB the first coral disease known to be caused by a protozoan. When "H. corallasia" divides, the daughter cells move to the leading edge of the dark band and produce a protective shell called a lorica. To do this, they drill into the coral's limestone skeleton, killing coral polyps in the process.
A disease with very similar symptoms has been found in the Caribbean Sea, but has been given a different name as it is caused by a different species in the genus "Halofolliculina" and occurs in a different type of environment.
Symptoms of cadang-cadang develop slowly over 8 to 15 years making it difficult to diagnose at an early time. There are three main “stages” of defined series of characteristics: early, medium, and late stages. The first symptoms in the early stage develop within two to four years of infection. These symptoms include scarification of the coconuts which also become rounded. The leaves (fronds) display bright yellow spots. About two years later, during the medium stage, the inflorescences become stunted and eventually killed, so no more coconuts are produced. Yellow spots are larger and in greater abundance to give the appearance of chlorosis. During the final stage, roughly 6 years after the first symptoms are recorded, the yellow/bronze fronds start to decrease in size and number. Finally, all the leaves coalesce, leaving just the trunk of the palm “standing like a telephone pole”.
Palms under 10 years of age are rarely affected by cadang-cadang; the incidence of disease increases until about 40 years of age and then plateaus. "No recovery has ever been observed, and the disease is always fatal". African oil palm has similar symptoms as coconut but also have orange spotting on palms.
Cadang-cadang is a disease caused by Coconut cadang-cadang viroid (CCCVd), a lethal viroid of coconut ("Cocos nucifera"), anahaw ("Saribus rotundifolius") buri ("Corypha utan"), and African oil palm ("Elaeis guineensis"). The name cadang-cadang comes from the word that means dying in Bicol. It was originally reported on San Miguel Island in the Philippines in 1927/1928. "By 1962, all but 100 of 250,000 palms on this island had died from the disease," indicating an epidemic. Every year one million coconut palms are killed by CCCVd and over 30 million coconut palms have been killed since Cadang-cadang has been discovered. CCCVd directly affects the production of copra, a raw material for coconut oil and animal feed. Total losses of about 30 million palms and annual yield losses of about 22,000 tons of copra have been attributed to Cadang-cadang disease in the Philippines.
Favid (of "favus" Latin for "honeycomb" or tinea favosa) is a disease usually affecting the scalp, but occurring occasionally on any part of the skin, and even at times on mucous membranes.
The word “Favid” is more used than French word “favus”, which is close to the Latin etymology.
The uncomplicated appearance is that of a number of yellowish, circular, cup-shaped crusts (scutula) grouped in patches like a piece of honeycomb, each about the size of a split pea, with a hair projecting in the center. These increase in size and become crusted over, so that the characteristic lesion can only be seen round the edge of the scab. A mousy odour is often present. Growth continues to take place for several months, when scab and scutulum come away, leaving a shining bare patch destitute of hair. The disease is essentially chronic, lasting from ten to twenty years. It is caused by the growth of a fungus, and pathologically is the reaction of the tissues to the growth.
The fungus was named after a microscopic structure termed "achorion" (a term not used in modern science), seen in scrapings of infected skin, which consists of slender, mycelial threads matted together, bearing oval, nucleated fungal substrate-arthroconidia either free or jointed. This structure is currently called "scutula." The fungus itself is now called "Trichophyton schoenleinii".
During initial infection, the fungal spores would appear to enter through the unbroken cutaneous surface, and to germinate mostly in and around the hair follicle and sometimes in the shaft of the hair.
The initial lesion is a small subcutaneous swelling following minor trauma. Later, sinuses that discharge purulent and seropurulent exudates containing grains which are fungal colonies are formed. Destruction of deeper tissues, and deformity and loss of function in the affected limbs may occur in later stages.
Turf necrotic ring spot is known to infect various bluegrass and turfgrass species, especially the cool-season grasses. The fungus also infects fescues and bentgrasses (11). It is common in sodded lawns, rapidly growing lawns, and lawns with layered soil (3). The pathogen produces circular patches of bald spots that are tan or yellow in color (12). These patches are about 5 to 10 cm in diameter, but can grow to be about 1 meter in diameter. Eventually, as the infected turf dies, the spots turn brown. Within the patch, there may be areas of living grass at the center, creating a frog-eye appearance that this pathogen is known for. This is the result of the turf in the center surviving or being recolonized by healthy grass (3).
While the infection happens during cooler seasons, such as fall and spring, the symptoms can carry into summer (7). Should the disease continue through the summer, it may cause the crown and roots to become blackened with visible mycelium (11). As previously mentioned, this disease alters the grass by creating patches of yellow or tan dead grass (1). Another possible symptom is leaf lesions. Leaf lesions are often common among fungal diseases. If there are leaf lesions on the blade, the lesions will be inconsistent in terms of size and shape. The lesions may also be varying colors, such as yellow, tan, or dark brown (11).
Eumycetoma is a chronic granulomatous fungal disease of humans, affecting mainly the limbs, and sometimes the abdominal and chest walls or the head. "Mycetoma pedis" (mycetoma of the foot), the most common form of mycetoma, is known widely as the Madura foot. The infection is endemic in Africa, India and Central and South America.
Coral diseases mostly take the form of a narrow band of diseased tissue separating the living tissue from the exposed skeleton. The band moves across the surface of the colony at the rate of a few millimetres a day, leaving behind bare skeletal material that is rapidly colonized by algae.
Many of the diseases that affect corals are known by their most obvious symptoms such as black band disease, white pox and yellow-band disease. However in many instances it has not been possible to identify the pathogens responsible for the disease and culture them in the laboratory; that the coral is sick and the tissue is necrotic is apparent, but whether the fungi or bacteria present caused the disease or merely fed on the already dying tissue is not clear. There is also a minute crab a millimetre or so wide which is often associated with diseased corals, but whether it introduces the disease or just moves in to consume the necrotic tissue is uncertain. Some of the bacteria found on diseased corals are terrestrial species that are not normally considered pathogenic. Further research has shown that viruses may be involved in white plague infections, the coral small circular single-stranded DNA (ssDNA) viruses being present in association with diseased tissue. Viruses in this group are known to cause disease in some plants and animals.
Yellow red muscardine is caused by "Paecilomyces fumosoroseus". It can produce reddish patches on the external body and powdery masses of spores internally.
Diphtheritic stomatitis is a recently discovered disease and has thus far been reported only in Yellow-eyed penguins ("Megadyptes antipodes"). Its symptoms are similar to human diphtheria and is characterized by infecteous lesions in the mouth area that impede swallowing and cause respiratory troubles. The infection is caused by "Corynebacterium amycolatum", an aerobic Gram-positive bacterium and mainly affects very young chicks. However, it seems likely that a triggering agent (e.g. a virus) might be involved in which renders the corynebacterium a secondary pathogen.
The disease has been a serious cause of mortality in the 2002 and 2004 Yellow-eyed penguin breeding seasons. It seems that only the New Zealand South Island and Stewart Island/Rakiura were affected.
So far one agent has been identified, the ciliate protozoan "Halofolliculina corallasia". Skeletal eroding band is the first recorded disease of corals that is caused by a protozoan, and thus the first known to be caused by an eukaryote – most are caused by prokaryotic bacteria. For example, black band disease is caused by microbial mats of variable composition, and White pox disease by the bacterium "Serratia marcescens".
"H. corallasia" is a protozoan that secretes a bottle-like housing called a lorica (Latin for cuirass, flexible body armor), that is anchored to a surface and into which the cells retract when disturbed. When a mature individual cell division divides, it produces a pair of worm-like larvae that settle on undamaged coral just ahead of the black band. There each daughter cell secretes its lorica, at the same spinning to produce the lorica's flask-like shape. This spinning, combined with the chemicals that harden the lorica, crumble the coral skeleton and kill the polyps. The discarded loricae of the "parent" "H. corallasia" cells remain, leaving the distinctive spotted region in the wake of the living black band.
Xanthochromism (also called xanthochroism or xanthism) is an unusually yellow pigmentation in an animal. It is often associated with the lack of usual red pigmentation and its replacement with yellow. The cause is usually genetic but may also be related to the animal's diet. A Cornell University survey of unusual-looking birds visiting feeders reported that 4% of such birds were described as xanthochromistic (compared with 76% albinistic). The opposite of xanthochromism, a deficiency in or complete absence of yellow pigment, is known as "axanthism".
Birds exhibiting genetic xanthochromism, especially deliberately bred mutations of several species of parrot in aviculture, are termed "lutinos". Wild birds in which xanthochromism has been recorded include yellow wagtail, wood warbler, Cape May warbler, rose-breasted grosbeak, evening grosbeak, red-bellied woodpecker, scarlet tanager, northern cardinal, great spotted woodpecker, common tailorbird, crimson-breasted shrike, kākāriki and kea.
Southeast Asian ovalocytosis is a blood disorder that is similar to, but distinct from hereditary elliptocytosis. It is common in some communities in Malaysia and Papua New Guinea, as it confers some resistance to cerebral Falciparum Malaria.