Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms of sideroblastic anemia include skin paleness, fatigue, dizziness, and enlarged spleen and liver. Heart disease, liver damage, and kidney failure can result from iron buildup in these organs.
Most individuals with G6PD deficiency are asymptomatic.
Symptomatic patients are almost exclusively male, due to the X-linked pattern of inheritance, but female carriers can be clinically affected due to unfavorable lyonization, where random inactivation of an X-chromosome in certain cells creates a population of G6PD-deficient red blood cells coexisting with unaffected red blood cells. A female with one affected X chromosome will show the deficiency in approximately half of her red blood cells. However, in rare cases, including double X-deficiency, the ratio can be much more than half, making the individual almost as sensitive as males.
Red blood cell breakdown (also known as hemolysis) in G6PD deficiency can manifest in a number of ways, including the following:
- Prolonged neonatal jaundice, possibly leading to kernicterus (arguably the most serious complication of G6PD deficiency)
- Hemolytic crises in response to:
- Illness (especially infections)
- Certain drugs (see below)
- Certain foods, most notably broad beans from which the word favism derives
- Certain chemicals
- Diabetic ketoacidosis
- Very severe crises can cause acute kidney failure
Favism may be formally defined as a hemolytic response to the consumption of fava beans, also known as broad beans. Important to note is that all individuals with favism show G6PD deficiency, but not all individuals with G6PD deficiency show favism. The condition is known to be more prevalent in infants and children, and G6PD genetic variant can influence chemical sensitivity. Other than this, the specifics of the chemical relationship between favism and G6PD are not well understood.
Sideroblastic anemia is typically divided into subtypes based on its cause.
- Hereditary or congenital sideroblastic anemia may be X-linked or autosomal.
GLRX5 has also been implicated.
- Acquired, or secondary, sideroblastic anemia develops after birth and is divided according to its cause.
Anemia may lead to malaise, pallor and associated symptoms such as palpitations.
Low platelet counts (thrombocytopenia) if present is associated with an increased risk of hemorrhage, bruising and petechiae. Low white blood cell counts (leukocytopenia) if present leads to an increased risk of infections which can be severe.
Carriers of the underlying mutation do not show any symptoms unless their red blood cells are exposed to certain triggers, which can be of three main types:
- Foods (fava beans is the hallmark trigger for G6PD mutation carriers),
- Medicines and other chemicals such as those derived from quinine (see below), or
- Stress from a bacterial or viral infection.
In order to avoid the hemolytic anemia, G6PD carriers have to avoid a large number of drugs and foods. List of such "triggers" can be obtained from medical providers.
X-linked thrombocytopenia is typically diagnosed in infancy. The disease presents as a bleeding disorder with easy bruising, mucosal bleeding, such as nosebleeds, and mild to severe anemia. Anemia is a condition in which there is an insufficient number of red blood cells to carry adequate levels of oxygen to the body’s tissues. X-linked thrombocytopenia is considered to be the milder phenotype of the "WAS"-related disorders. As age increases, the severity of symptoms tends to decrease. However, individuals with X-linked thrombocytopenia have an increased risk for life-threatening brain hemorrhages and spontaneous bleeding.
1- Red cell indices and blood film appearances suggest iron deficiency, although peripheral blood changes are not usually as marked as in moderate or severe iron deficiency.
2- Erythropoiesis is abnormal because of ineffective iron utilisation with poor haemoglobinisation of red cell precursors and
3- Bone marrow iron stores are normal or increased and sideroblasts may be frequent and abnormal.
Typical causes of microcytic anemia include:
- Childhood
- Iron deficiency anemia, by far the most common cause of anemia in general and of microcytic anemia in particular
- Thalassemia
- Adulthood
- Iron deficiency anemia
- Sideroblastic anemia, In congenital sideroblastic anemia the MCV (mean corpuscular volume) is either low or normal. In contrast, the MCV is usually high in the much more common acquired sideroblastic anemia.
- Anemia of chronic disease, although this more typically causes normochromic, normocytic anemia. Microcytic anemia has been discussed by Weng et al.
- Lead poisoning
- Vitamin B (pyridoxine) deficiency
Other causes that are typically thought of as causing normocytic anemia or macrocytic anemia must also be considered, and the presence of two or more causes of anemia can distort the typical picture.
There are five main causes of microcytic anemia forming the acronym TAILS. Thalassemia, Anemia of chronic disease, Iron deficiency, Lead poisoning and Congenital sideroblastic anemia. Only the first three are common in most parts of the world. In theory, these three can be differentiated by their red blood cell (RBC) morphologies. Anemia of chronic disease shows unremarkable RBCs, iron deficiency shows anisocytosis, anisochromia and elliptocytosis, and thalessemias demonstrate target cells and coarse basophilic stippling. In practice though elliptocytes and anisocytosis are often seen in thalessemia and target cells occasionally in iron deficiency. All three may show unremarkable RBC morphology. Coarse basophlic stippling is one reliable morphologic finding of thalessemia which does not appear in iron deficiency or anemia of chronic disease. The patient should be in an ethnically at risk group and the diagnosis is not confirmed without a confirmatory method such as hemoglobin HPLC, H body staining, molecular testing or another reliable method. Course basophlic stippling occurs in other cases as seen in Table 1
1- Secondary anaemias
- Chronic infection/inflammation
- Malignancy
2- Thalassaemia
3- Sideroblastic anaemia
Microcytic anaemia is any of several types of anaemia characterized by small red blood cells (called microcytes). The normal mean corpuscular volume (abbreviated to MCV on full blood count results) is 80-100 fL, with smaller cells (100 fL) as macrocytic (the latter occur in macrocytic anemia).The MCV is the average red blood cell size.
In microcytic anaemia, the red blood cells (erythrocytes) are usually also hypochromic, meaning that the red blood cells appear paler than usual. This is reflected by a lower-than-normal mean corpuscular hemoglobin concentration (MCHC), a measure representing the amount of hemoglobin per unit volume of fluid inside the cell; normally about 320-360 g/L or 32-36 g/dL. Typically, therefore, anemia of this category is described as "microcytic, hypochromic anaemia".
FA is characterized by bone marrow failure, AML, solid tumors, and developmental abnormalities. Classic features include abnormal thumbs, absent radii, short stature, skin hyperpigmentation, including café au lait spots, abnormal facial features (triangular face, microcephaly), abnormal kidneys, and decreased fertility. Many FA patients (about 30%) do not have any of the classic physical findings, but Diepoxybutane chromosome fragility assay showing increased chromosomal breaks can make the diagnosis. . About 80% of FA will develop bone marrow failure by age 20.
The first sign of a hematologic problem is usually petechiae and bruises, with later onset of pale appearance, feeling tired, and infections. Because macrocytosis usually precedes a low platelet count, patients with typical congenital anomalies associated with FA should be evaluated for an elevated red blood cell mean corpuscular volume.
The two most common signs and symptoms of bone marrow failure are bleeding and bruising. Blood may be seen throughout the gums, nose or the skin, and tend to last longer than normal. Children have a bigger chance of seeing blood in their urine or stools, which results in digestive problems with an unpleasant scent. Individuals with this condition may also encounter tooth loss or tooth decay. Chronic fatigue, shortness of breath, and recurrent colds can also be symptoms of bone marrow failure.
Anemia goes undetected in many people and symptoms can be minor. The symptoms can be related to an underlying cause or the anemia itself.
Most commonly, people with anemia report feelings of weakness or tired, and sometimes poor concentration. They may also report shortness of breath on exertion. In very severe anemia, the body may compensate for the lack of oxygen-carrying capability of the blood by increasing cardiac output. The patient may have symptoms related to this, such as palpitations, angina (if pre-existing heart disease is present), intermittent claudication of the legs, and symptoms of heart failure.
On examination, the signs exhibited may include pallor (pale skin, lining mucosa, conjunctiva and nail beds), but this is not a reliable sign. There may be signs of specific causes of anemia, e.g., koilonychia (in iron deficiency), jaundice (when anemia results from abnormal break down of red blood cells — in hemolytic anemia), bone deformities (found in thalassemia major) or leg ulcers (seen in sickle-cell disease).
In severe anemia, there may be signs of a hyperdynamic circulation: tachycardia (a fast heart rate), bounding pulse, flow murmurs, and cardiac ventricular hypertrophy (enlargement). There may be signs of heart failure.
Pica, the consumption of non-food items such as ice, but also paper, wax, or grass, and even hair or dirt, may be a symptom of iron deficiency, although it occurs often in those who have normal levels of hemoglobin.
Chronic anemia may result in behavioral disturbances in children as a direct result of impaired neurological development in infants, and reduced academic performance in children of school age. Restless legs syndrome is more common in those with iron-deficiency anemia.
Aplastic anemia is a rare disease in which the bone marrow and the hematopoietic stem cells that reside there are damaged. This causes a deficiency of all three blood cell types (pancytopenia): red blood cells (anemia), white blood cells (leukopenia), and platelets (thrombocytopenia). "Aplastic" refers to inability of the stem cells to generate mature blood cells.
It is most prevalent in people in their teens and twenties, but is also common among the elderly. It can be caused by heredity, immune disease, or exposure to chemicals, drugs, or radiation. However, in about half the cases, the cause is unknown.
The definitive diagnosis is by bone marrow biopsy; normal bone marrow has 30–70% blood stem cells, but in aplastic anemia, these cells are mostly gone and replaced by fat.
First line treatment for aplastic anemia consists of immunosuppressive drugs, typically either anti-lymphocyte globulin or anti-thymocyte globulin, combined with corticosteroids and ciclosporin. Hematopoietic stem cell transplantation is also used, especially for patients under 30 years of age with a related matched marrow donor.
Fanconi anaemia (FA) is a rare genetic disease resulting in impaired response to DNA damage. Although it is a very rare disorder, study of this and other bone marrow failure syndromes has improved scientific understanding of the mechanisms of normal bone marrow function and development of cancer. Among those affected, the majority develops cancer, most often acute myelogenous leukemia, and 90% develop bone marrow failure (the inability to produce blood cells) by age 40. About 60–75% of people have congenital defects, commonly short stature, abnormalities of the skin, arms, head, eyes, kidneys, and ears, and developmental disabilities. Around 75% of people have some form of endocrine problems, with varying degrees of severity.
FA is the result of a genetic defect in a cluster of proteins responsible for DNA repair.
Treatment with androgens and hematopoietic (blood cell) growth factors can help bone marrow failure temporarily, but the long-term treatment is bone marrow transplant if a donor is available. Because of the genetic defect in DNA repair, cells from people with FA are sensitive to drugs that treat cancer by DNA crosslinking, such as mitomycin C. The typical age of death was 30 years in 2000.
FA occurs in about one per 130,000 births, with a higher frequency in Ashkenazi Jews in Israel and Afrikaners in South Africa. The disease is named after the Swiss pediatrician who originally described this disorder, Guido Fanconi. It should not be confused with Fanconi syndrome, a kidney disorder also named after Fanconi.
In general, signs of anemia (pallor, fatigue, shortness of breath, and potential for heart failure) are present. In small children, failure to thrive may occur in any form of anemia. Certain aspects of the medical history can suggest a cause for hemolysis, such as drugs, consumption of fava beans due to Favism, the presence of prosthetic heart valve, or other medical illness.
Chronic hemolysis leads to an increased excretion of bilirubin into the biliary tract, which in turn may lead to gallstones. The continuous release of free hemoglobin has been linked with the development of pulmonary hypertension (increased pressure over the pulmonary artery); this, in turn, leads to episodes of syncope (fainting), chest pain, and progressive breathlessness. Pulmonary hypertension eventually causes right ventricular heart failure, the symptoms of which are peripheral edema (fluid accumulation in the skin of the legs) and ascites (fluid accumulation in the abdominal cavity).
Bone marrow failure is associated with three types of diseases, Fanconi anemia (FA), dyskeratosis congenita, and aplastic anemia. Fanconi anemia is an inherited blood disorder due to abnormal breakages in DNA genes. It is linked to hyperpigmentation, which is the darkening of an area of skin or nails caused by increased melanin. According to Histopathology, “However, in about 30% of FA patients no physical abnormalities are found”. Dyskeratosis congenita often affects multiple parts of the body. Individuals with this disorder usually show changes in skin pigmentations, unusual fingernail growth, and mucosa leukoplakia; the inner part of the mouth is encased with white patches that may never resolve. Aplastic anemia happens when bone marrow doesn’t produce enough new blood cells throughout the body. Aplastic anemia is an acquired autoimmune disease, which occurs when the immune system mistakenly attacks and destroys healthy body tissue.
X-linked thrombocytopenia, also referred to as XLT or thrombocytopenia 1, is an inherited clotting disorder that primarily affects males. It is a "WAS"-related disorder, meaning it is caused by a mutation in the Wiskott-Aldrich Syndrome ("WAS") gene, which is located on the short arm of the X chromosome. "WAS"-related disorders include Wiskott-Aldrich syndrome, XLT, and X-linked congenital neutropenia (XLN). Of the "WAS"-related disorders, X-linked thrombocytopenia is considered to be the milder phenotype. Between 1 and 10 per million males worldwide are affected with this disorder. Females may be affected with this disorder but this is very rare since females have two X chromosomes and are therefore typically carriers of the mutation.
Pancytopenia is a medical condition in which there is a reduction in the number of red and white blood cells, as well as platelets.
If only two parameters from the full blood count are low, the term bicytopenia can be used. The diagnostic approach is the same as for pancytopenia.
Anemia is a decrease in the total amount of red blood cells (RBCs) or hemoglobin in the blood, or a lowered ability of the blood to carry oxygen. When anemia comes on slowly, the symptoms are often vague and may include feeling tired, weakness, shortness of breath or a poor ability to exercise. Anemia that comes on quickly often has greater symptoms, which may include confusion, feeling like one is going to pass out, loss of consciousness, or increased thirst. Anemia must be significant before a person becomes noticeably pale. Additional symptoms may occur depending on the underlying cause.
The three main types of anemia are due to blood loss, decreased red blood cell production, and increased red blood cell breakdown. Causes of blood loss include trauma and gastrointestinal bleeding, among others. Causes of decreased production include iron deficiency, a lack of vitamin B12, thalassemia, and a number of neoplasms of the bone marrow. Causes of increased breakdown include a number of genetic conditions such as sickle cell anemia, infections like malaria, and certain autoimmune diseases. It can also be classified based on the size of red blood cells and amount of hemoglobin in each cell. If the cells are small, it is microcytic anemia. If they are large, it is macrocytic anemia while if they are normal sized, it is normocytic anemia. Diagnosis in men is based on a hemoglobin of less than 130 to 140 g/L (13 to 14 g/dL), while in women, it must be less than 120 to 130 g/L (12 to 13 g/dL). Further testing is then required to determine the cause.
Certain groups of individuals, such as pregnant women, benefit from the use of iron pills for prevention. Dietary supplementation, without determining the specific cause, is not recommended. The use of blood transfusions is typically based on a person's signs and symptoms. In those without symptoms, they are not recommended unless hemoglobin levels are less than 60 to 80 g/L (6 to 8 g/dL). These recommendations may also apply to some people with acute bleeding. Erythropoiesis-stimulating medications are only recommended in those with severe anemia.
Anemia is the most common blood disorder, affecting about a third of the global population. Iron-deficiency anemia affects nearly 1 billion people. In 2013, anemia due to iron deficiency resulted in about 183,000 deaths – down from 213,000 deaths in 1990. It is more common in women than men, during pregnancy, and in children and the elderly. Anemia increases costs of medical care and lowers a person's productivity through a decreased ability to work. The name is derived from "", meaning "lack of blood", from ἀν- "an-", "not" and αἷμα "haima", "blood".
Hemolytic anemia or haemolytic anaemia is a form of anemia due to hemolysis, the abnormal breakdown of red blood cells (RBCs), either in the blood vessels (intravascular hemolysis) or elsewhere in the human body (extravascular, but usually in the spleen). It has numerous possible consequences, ranging from relatively harmless to life-threatening. The general classification of hemolytic anemia is either inherited or acquired. Treatment depends on the cause and nature of the breakdown.
Symptoms of hemolytic anemia are similar to other forms of anemia (fatigue and shortness of breath), but in addition, the breakdown of red cells leads to jaundice and increases the risk of particular long-term complications, such as gallstones and pulmonary hypertension.
Myelophthisic anemia (or myelophthisis) is a severe type of anemia found in some people with diseases that affect the bone marrow. Myelophthisis refers to the displacement of hemopoietic bone-marrow tissue either by fibrosis, tumors or granulomas. The word comes from the roots "myelo-", which refers to bone marrow, and "phthysis", shrinkage or atrophy.
Iatrogenic causes of pancytopenia include chemotherapy for malignancies if the drug or drugs used cause bone marrow suppression. Rarely, drugs (antibiotics, blood pressure medication, heart medication) can cause pancytopenia.
The antibiotics Linezolid and Chloramphenicol can cause pancytopenia in some individuals.
Rarely, pancytopenia may have other causes, such as mononucleosis, or other viral diseases. Increasingly, HIV is itself a cause for pancytopenia.
- Familial hemophagocytic syndrome
- Aplastic anemia
- Gaucher's disease
- metastatic carcinoma of bone
- Multiple Myeloma
- overwhelming infections
- Lymphoma
- myelofibrosis
- Dyskeratosis congenita
- Myelodysplastic syndrome
- Leukemia
- Leishmaniasis
- Severe Folate or vitamin B12 deficiency
- Systemic lupus erythematosus
- Paroxysmal nocturnal hemoglobinuria (blood test)
- Viral infections (such as HIV, EBV--undetermined virus is most common).
- Alimentary toxic aleukia
- Copper deficiency
- Pernicious anemia
- Medication
- Hypersplenism
- Osteopetrosis
- Organic acidurias (Propionic Acidemia, Methylmalonic Aciduria, Isovaleric Aciduria)
- Low dose arsenic poisoning
- Sako disease (Myelodysplastic-cytosis)
- Chronic radiation sickness
- LIG4 syndrome
The disease occurs much more in males than females (due to the X-linked recessive pattern of inheritance) and is estimated to occur in between 1 and 10 males per million. The first signs of WAS are usually petechiae and bruising, resulting from a low platelet count. Spontaneous nose bleeds and bloody diarrhea are common. Eczema develops within the first month of life. Recurrent bacterial infections develop by three months. Enlargement of the spleen is not an uncommon finding. The majority of WAS children develop at least one autoimmune disorder, and cancers (mainly lymphoma and leukemia) develop in up to a third of patients. Immunoglobulin M (IgM) levels are reduced, IgA and IgE are elevated, and IgG levels can be normal, reduced, or elevated. In addition to low blood platelet counts (i.e. thrombocytopenia), ~30% of afflicted individuals exhibit eosinophilia, i.e. high blood eosinophil counts.
The currently recognized features of HHS are cerebellar hypoplasia, immunodeficiency, progressive bone marrow failure, and intrauterine growth retardation. HHS patients also commonly exhibit symptoms such as microcephaly, aplastic anemia, and mental retardation.