Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A patient presenting with Hyper IgM syndrome may be affected by simple infectious organisms in exposed regions like the respiratory system. Vaccination against pathogenic organisms may not help these individuals, because vaccinating them does not properly stimulate production of antibodies. Symptoms can include:
- Fever (recurrent infections)
- Low counts of IgA, IgG and IgE antibodies
- CD40L not reactive in T cells
- Recurrent sinopulmonary and GI infections with pyogenic bacteria and opportunistic organisms, and cutaneous manifestations including pyodermas extensive warts.
Hyper IgM Syndrome Type 1 (HIGM-1) is the X-linked variant of the Hyper-IgM syndrome. The affected individuals are virtually always male, because males only have one X chromosome, received from their mothers. Their mothers are not symptomatic, even though they are carriers of the allele, because the trait is recessive. Male offspring of these women have a 50% chance of inheriting their mother's mutant allele.
Hypohidrotic ectodermal dysplasia (also known as "anhidrotic ectodermal dysplasia", and "Christ-Siemens-Touraine syndrome") is one of about 150 types of ectodermal dysplasia in humans. Before birth, these disorders result in the abnormal development of structures including the skin, hair, nails, teeth, and sweat glands.
Theoretically, a mutation in any of the may cause disease, but below are some notable ones, with short description of symptoms:
- Adrenoleukodystrophy; leads to progressive brain damage, failure of the adrenal glands and eventually death.
- Alport syndrome; glomerulonephritis, endstage kidney disease, and hearing loss.
- Androgen insensitivity syndrome; variable degrees of undervirilization and/or infertility in XY persons of either gender
- Barth syndrome; metabolism distortion, delayed motor skills, stamina deficiency, hypotonia, chronic fatigue, delayed growth, cardiomyopathy, and compromised immune system.
- Blue cone monochromacy; low vision acuity, color blindness, photophobia, infantile nystagmus.
- Centronuclear myopathy; where cell nuclei are abnormally located in skeletal muscle cells. In CNM the nuclei are located at a position in the center of the cell, instead of their normal location at the periphery.
- Charcot–Marie–Tooth disease (CMTX2-3); disorder of nerves (neuropathy) that is characterized by loss of muscle tissue and touch sensation, predominantly in the feet and legs but also in the hands and arms in the advanced stages of disease.
- Coffin–Lowry syndrome; severe mental retardation sometimes associated with abnormalities of growth, cardiac abnormalities, kyphoscoliosis as well as auditory and visual abnormalities.
- Fabry disease; A lysosomal storage disease causing anhidrosis, fatigue, angiokeratomas, burning extremity pain and ocular involvement.
- Hunter's Syndrome; potentially causing hearing loss, thickening of the heart valves leading to a decline in cardiac function, obstructive airway disease, sleep apnea, and enlargement of the liver and spleen.
- Hypohidrotic ectodermal dysplasia, presenting with hypohidrosis, hypotrichosis, hypodontia
- Kabuki syndrome; multiple congenital anomalies and mental retardation.
- Spinal and bulbar muscular atrophy; muscle cramps and progressive weakness
- Lesch-Nyhan syndrome; neurologic dysfunction, cognitive and behavioral disturbances including self-mutilation, and uric acid overproduction (hyperuricemia)
- Lowe Syndrome; hydrophthalmia, cataracts, intellectual disabilities, aminoaciduria, reduced renal ammonia production and vitamin D-resistant rickets
- Menkes disease; sparse and coarse hair, growth failure, and deterioration of the nervous system
- Nasodigitoacoustic syndrome; mishaped nose, brachydactyly of the distal phalanges, sensorineural deafness
- Nonsyndromic deafness; hearing loss
- Norrie disease; cataracts, leukocoria along with other developmental issues in the eye
- Occipital horn syndrome; deformations in the skeleton
- Ocular albinism; lack of pigmentation in the eye
- Ornithine transcarbamylase deficiency; developmental delay and mental retardation. Progressive liver damage, skin lesions, and brittle hair may also be seen
- Siderius X-linked mental retardation syndrome; cleft lip and palate with mental retardation and facial dysmorphism, caused by mutations in the histone demethylase PHF8
- Simpson-Golabi-Behmel syndrome; coarse faces with protruding jaw and tongue, widened nasal bridge, and upturned nasal tip
- Spinal muscular atrophy caused by UBE1 gene mutation; weakness due to loss of the motor neurons of the spinal cord and brainstem
- Wiskott-Aldrich syndrome; eczema, thrombocytopenia, immune deficiency, and bloody diarrhea
- X-linked Severe Combined Immunodeficiency (SCID); infections, usually causing death in the first years of life
- X-linked sideroblastic anemia; skin paleness, fatigue, dizziness and enlarged spleen and liver.
It is characterized by a deficiency in biliary copper excretion that causes deformations in the skeleton. These include projections on the back of the skull (parasagittal bone exostoses arising from the occipital bone—the so-called "occipital horns") as well as deformities of the elbow, radial head dislocation, hammer-shaped lateral ends of the clavicles, and abnormalities of the hips and pelvis.
OHS presents in early to middle childhood. Children may present with features such as:
Some of the symptoms and signs of IPEX syndrome are the following:
X-linked lymphoproliferative disease (also known as "Duncan's disease" or "Purtilo syndrome") is a lymphoproliferative disorder.
Most people with hypohidrotic ectodermal dysplasia have a reduced ability to sweat (hypohidrosis) because they have fewer sweat glands than normal or their sweat glands do not function properly. Sweating is a major way that the body controls its temperature; as sweat evaporates from the skin, it cools the body. An inability to sweat can lead to a dangerously high body temperature (hyperthermia) particularly in hot weather. In some cases, hyperthermia can cause life-threatening medical problems.
Affected individuals tend to have sparse scalp and body hair (hypotrichosis). The hair is often light-coloured, brittle, and slow-growing. This condition is also characterized by absent teeth (hypodontia) or teeth that are malformed. The teeth that are present are frequently small and pointed.
Hypohidrotic ectodermal dysplasia is associated with distinctive facial features including a prominent forehead, thick lips, and a flattened bridge of the nose. Additional features of this condition include thin, wrinkled, and dark-colored skin around the eyes; chronic skin problems such as eczema; and a bad-smelling discharge from the nose (ozena).
Hypohidrotic ectodermal dysplasia is the most common form of ectodermal dysplasia in humans. It is estimated to affect at least 1 in 17,000 people worldwide.
Bazex–Dupré–Christol syndrome (also known as "Bazex syndrome", and "follicular atrophoderma and basal cell carcinomas") is a very rare condition inherited in an X-linked dominant fashion. Physical findings typically include follicular atrophoderma, multiple basal cell carcinomas, hypotrichosis, and hypohidrosis.
This condition should not be confused with the unrelated condition acrokeratosis paraneoplastica of Bazex, which may also be referred to Bazex syndrome.
Keratosis follicularis spinulosa decalvans (also known as "Siemens-1 syndrome") is a rare X-linked disorder described by Siemens in 1926, a disease that begins in infancy with keratosis pilaris localized on the face, then evolves to more diffuse involvement.
An association with SAT1 has been suggested.
The precise symptoms of a primary immunodeficiency depend on the type of defect. Generally, the symptoms and signs that lead to the diagnosis of an immunodeficiency include recurrent or persistent infections or developmental delay as a result of infection. Particular organ problems (e.g. diseases involving the skin, heart, facial development and skeletal system) may be present in certain conditions. Others predispose to autoimmune disease, where the immune system attacks the body's own tissues, or tumours (sometimes specific forms of cancer, such as lymphoma). The nature of the infections, as well as the additional features, may provide clues as to the exact nature of the immune defect.
The symptoms of Hunter syndrome (MPS II) are generally not apparent at birth, but usually start to become noticeable after the first year of life. Often, the first symptoms may include abdominal hernias, ear infections, runny noses, and colds. Since these symptoms are quite common among all infants, they are not likely to lead a doctor to make a diagnosis of Hunter syndrome right away. As the buildup of glycosaminoglycans (GAGs) continues throughout the cells of the body, signs of Hunter syndrome become more visible. Physical appearances of many children with Hunter syndrome include a distinctive coarseness in their facial features, including a prominent forehead, a nose with a flattened bridge, and an enlarged tongue. For this reason, unrelated children with Hunter syndrome often look alike. They may also have a large head, as well as an enlarged abdomen. Many continue to have frequent infections of the ears and respiratory tract.
The continued storage of GAGs in cells can lead to organs being affected in important ways. The thickening of the heart valves along with the walls of the heart can result in progressive decline in cardiac function. The walls of the airway may become thickened, as well, leading to breathing problems while sleeping (obstructive airway disease) and noisy breathing generally. People with Hunter syndrome may also have limited lung capacity due to pulmonary involvement. As the liver and spleen grow larger with time, the belly may become distended, making hernias more noticeable. All major joints (including the wrists, elbows, shoulders, hips, and knees) may be affected by Hunter syndrome, leading to joint stiffness and limited motion. Progressive involvement of the finger and thumb joints results in decreased ability to pick up small objects. The effects on other joints, such as hips and knees, can make walking normally increasingly difficult. If carpal tunnel syndrome develops, a common symptom even in young children with Hunter syndrome, a further decrease in hand function can occur. The bones themselves may be affected, resulting in short stature. In addition, pebbly, ivory-colored skin lesions may be found on the upper arms, legs, and upper back of some people with Hunter syndrome. The presence or absence of the skin lesions is not helpful, however, in predicting clinical severity in Hunter syndrome. Finally, the storage of GAGs in the brain can lead to delayed development with subsequent mental retardation and progressive loss of function. The rate and degree of progression is different for each person with Hunter syndrome.
Although Hunter syndrome is associated with a broad spectrum of clinical severity, two main forms can be recognized - severe and mild/attenuated. The differences between the severe and attenuated forms are due mainly to the progressive development of neurodegeneration in the severe form. Though the terms "attenuated" or "mild" are used by physicians in comparing people with Hunter syndrome, the effects of even mild disease are quite serious. Between the two main forms of disease, and even within them, two of the most significant areas of variability concern the degree of mental retardation and expected lifespan. Some people who have Hunter syndrome experience no mental handicaps and live into their 20s or 30s, with occasional reports of people who have lived into their 50s or 60s. Since the implementation of enzyme replacement therapy for Hunter syndrome, lifespans for those without mental handicaps are expected to lengthen since their physical disease appears to improve or stabilize with such treatment. The quality of life remains high in a large number of people, and many adults are actively employed.
In contrast, others with Hunter syndrome develop severe mental impairment and have life expectancies of 15 years or less, often due to neurodegeneration or physical complications from the disease. The age at onset of symptoms and the presence/absence of behavioral disturbances are predictive factors of ultimate disease severity in very young patients. Behavioral disturbances can often mimic combinations of symptoms of attention deficit hyperactivity disorder, autism, obsessive compulsive disorder, and/or sensory processing disorder, although the existence and level of symptoms differ in each affected child. They often also include a lack of an appropriate sense of danger, and aggression. The behavioral symptoms of Hunter syndrome generally precede neurodegeneration and often increase in severity until the mental handicaps become more pronounced.
This condition occurs almost exclusively in males. The mutation may be spontaneous or inherited from the mother. The typical clinical features are:
- flat nasal tip
- short columella
- maxillary hypoplasia
- involvement of terminal phalanges
- stippled chondrodystrophy
A number of syndromes escape formal classification but are otherwise recognisable by particular clinical or immunological features.
1. Wiskott–Aldrich syndrome
2. DNA repair defects not causing isolated SCID: ataxia-telangiectasia, ataxia-like syndrome, Nijmegen breakage syndrome, Bloom syndrome
3. DiGeorge syndrome (when associated with thymic defects)
4. Various immuno-osseous dysplasias (abnormal development of the skeleton with immune problems): cartilage–hair hypoplasia, Schimke syndrome
5. Hermansky–Pudlak syndrome type 2
6. Hyper-IgE syndrome
7. Chronic mucocutaneous candidiasis
8. Hepatic venoocclusive disease with immunodeficiency (VODI)
9. XL-dyskeratosis congenita (Hoyeraal-Hreidarsson syndrome)
IPEX (immunodysregulation polyendocrinopathy enteropathy X-linked) syndrome is a rare disease linked to the dysfunction of the transcription factor FOXP3, widely considered to be the master regulator of the regulatory T cell lineage. It leads to the dysfunction of regulatory T-cells and the subsequent autoimmunity. The disorder manifests with autoimmune enteropathy, psoriasiform or eczematous dermatitis, nail dystrophy, autoimmune endocrinopathies, and autoimmune skin conditions such as alopecia universalis and bullous pemphigoid.
Management for immunodysregulation polyendocrinopathy enteropathy X-linked syndrome has seen limited success in treating the syndrome by bone marrow transplantation.
X-linked recessive chondrodysplasia punctata is a type of chondrodysplasia punctata that can involve the skin, hair, and cause short stature with skeletal abnormalities, cataracts, and deafness.
This condition is also known as arylsulfatase E deficiency, CDPX1, and X-linked recessive chondrodysplasia punctata 1. The syndrome rarely affects females, but they can be carriers of the recessive allele. Although the exact number of people diagnosed with CDPX1 is unknown, it was estimated that 1 in 500,000 have CDPX1 in varying severity. This condition is not linked to a specific ethnicity. The mutation that leads to a deficiency in arylsulfatase E. (ARSE) occurs in the coding region of the gene.Absence of stippling, deposits of calcium, of bones and cartilage, shown on x-ray, does not rule out chondrodysplasia punctata or a normal chondrodysplasia punctata 1 (CDPX1) gene without mutation. Stippling of the bones and cartilage is rarely seen after childhood. Phalangeal abnormalities are important clinical features to look for once the stippling is no longer visible. Other, more severe, clinical features include respiratory abnormalities, hearing loss, cervical spine abnormalities, delayed cognitive development, ophthalmologic abnormalities, cardiac abnormalities, gastroesophageal reflux, and feeding difficulties. CDPX1 actually has a spectrum of severity; different mutations within the CDPX1 gene have different effects on the catalytic activity of the ARSE protein. The mutations vary between missense, nonsense, insertions, and deletions.
OHS is a milder allelic variant of Menkes disease, having a later age of onset and being associated with far less severe central neurodegeneration. The milder nature of OHS is often attributable to ‘leaky’ splice junction mutations that allow 20–30% of ATP7A messenger RNA (mRNA) transcripts to be correctly processed. As in cases of Menkes disease, individuals with OHS manifest connective tissue abnormalities resulting from deficient activity of lysyl oxidase, a copper-requiring enzyme that normally deaminates lysine and hydroxylysine in the first step of collagen crosslink formation. Such individuals also often endure inconvenient dysautonomic signs and symptoms related to a partial deficiency in dopamine-β-hydroxylase (DBH) activity. DBH, another copper-dependent enzyme, normally converts dopamine to norepinephrine, a crucial neurotransmitter in norepinephrinergic neurons. A natural mouse model of OHS, the so-called mottled blotchy model, recapitulates the connective tissue abnormalities, DBH deficiency and mild CNS damage seen in humans.
Autoimmune polyendocrine syndromes (APSs), also called autoimmune polyglandular syndromes (APSs), polyglandular autoimmune syndromes (PGASs), or polyendocrine autoimmune syndromes, are a heterogeneous group of rare diseases characterized by autoimmune activity against more than one endocrine organ, although non-endocrine organs can be affected.There are three types of APS or (in terms that mean the same thing) three APSs, and there are a number of other diseases which have endocrine autoimmunity.
Signs and symptoms of this disorder include weak muscle tone (hypotonia), sagging facial features, seizures, intellectual disability, and developmental delay. The patients have brittle hair and metaphyseal widening. In rare cases, symptoms begin later in childhood and are less severe. Affected infants may be born prematurely. Symptoms appear during infancy and are largely a result of abnormal intestinal copper absorption with a secondary deficiency in copper-dependent mitochondrial enzymes. Normal or slightly slowed development may proceed for 2 to 3 months, and then there will be severe developmental delay and a loss of early developmental skills. Menkes Disease is also characterized by seizures, failure to thrive, subnormal body temperature, and strikingly peculiar hair, which is kinky, colorless or steel-colored, and easily broken. There can be extensive neurodegeneration in the gray matter of the brain. Arteries in the brain can also be twisted with frayed and split inner walls. This can lead to rupture or blockage of the arteries. Weakened bones (osteoporosis) may result in fractures.
Occipital horn syndrome (sometimes called X-linked cutis laxa or Ehlers-Danlos type 9) is a mild form of Menkes syndrome that begins in early to middle childhood. It is characterized by calcium deposits in a bone at the base of the skull (occipital bone), coarse hair, loose skin, and joints.
The disease occurs much more in males than females (due to the X-linked recessive pattern of inheritance) and is estimated to occur in between 1 and 10 males per million. The first signs of WAS are usually petechiae and bruising, resulting from a low platelet count. Spontaneous nose bleeds and bloody diarrhea are common. Eczema develops within the first month of life. Recurrent bacterial infections develop by three months. Enlargement of the spleen is not an uncommon finding. The majority of WAS children develop at least one autoimmune disorder, and cancers (mainly lymphoma and leukemia) develop in up to a third of patients. Immunoglobulin M (IgM) levels are reduced, IgA and IgE are elevated, and IgG levels can be normal, reduced, or elevated. In addition to low blood platelet counts (i.e. thrombocytopenia), ~30% of afflicted individuals exhibit eosinophilia, i.e. high blood eosinophil counts.
The incidence of this condition is <1 per million population. It is found only in females as all affected males die before birth. Teeth with large roots (radiculomegaly), heart defects, and small eyes (microphthalmia) are the characteristic triad found in this syndrome.
Typical features of the condition include:
- Face
- Deep set eyes
- Broad nasal tip divided by a cleft
- Eyes
- Microphthalmia (small eyes)
- Early cataracts
- Glaucoma
- Teeth
- Radiculomegaly (teeth with very large roots)
- Delayed loss of primary teeth
- Missing (oligodontia) or abnormally small teeth
- Misaligned teeth
- Defective tooth enamel.
- Heart defects
- Atrial and/or ventricular defects
- Mitral valve prolapse
- Mild mental retardation and conductive or sensorineural hearing loss may occur.
X-linked thrombocytopenia is typically diagnosed in infancy. The disease presents as a bleeding disorder with easy bruising, mucosal bleeding, such as nosebleeds, and mild to severe anemia. Anemia is a condition in which there is an insufficient number of red blood cells to carry adequate levels of oxygen to the body’s tissues. X-linked thrombocytopenia is considered to be the milder phenotype of the "WAS"-related disorders. As age increases, the severity of symptoms tends to decrease. However, individuals with X-linked thrombocytopenia have an increased risk for life-threatening brain hemorrhages and spontaneous bleeding.
Jin et al. (2004) employ a numerical grading of severity:
- 0.5: intermittent thrombocytopenia
- 1.0: thrombocytopenia and small platelets (microthrombocytopenia)
- 2.0: microthrombocytopenia plus normally responsive eczema or occasional upper respiratory tract infections
- 2.5: microthrombocytopenia plus therapy-responsive but severe eczema or airway infections requiring antibiotics
- 3.0: microthrombocytopenia plus both eczema and airway infections requiring antibiotics
- 4.0: microthrombocytopenia plus eczema continuously requiring therapy and/or severe or life-threatening infections
- 5.0: microthrombocytopenia plus autoimmune disease or malignancy
The acronym "MASA" describes the four major symptoms - Mental retardation, Aphasia, Shuffling gait, and Adducted thumbs. Another name for this syndrome is "L1 syndrome".
The term "CRASH", for "corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraplegia, and hydrocephalus" has also been used to describe L1CAM-related disorders.
The major symptoms of XLI include scaling of the skin, particularly on the neck, trunk, and lower extremities. The extensor surfaces are typically the most severely affected areas. The >4 mm diameter scales adhere to the underlying skin and can be dark brown or gray in color. Symptoms may subside during the summer.