Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Vitamin B deficiency can also cause symptoms of mania and psychosis, fatigue, memory impairment, irritability, depression, ataxia, and personality changes. In infants symptoms include irritability, failure to thrive, apathy, anorexia, and developmental regression.
Loss of appetite and weight loss can occur. Additional signs are weakness, sore tongue, headaches, heart palpitations, irritability, and behavioral disorders. In adults, anemia (macrocytic, megaloblastic anemia) can be a sign of advanced folate deficiency.
Women with folate deficiency who become pregnant are more likely to give birth to low birth weight premature infants, and infants with neural tube defects. In infants and children, folate deficiency can lead to failure to thrive or slow growth rate, diarrhea, oral ulcers, megaloblastic anemia, neurological deterioration. Microcephaly, irritability, developmental delay, seizures, blindness and cerebellar ataxia can also be observed.
Vitamin B deficiency can lead to anemia and neurologic dysfunction. A mild deficiency may not cause any discernible symptoms, but as the deficiency becomes more significant, symptoms of anemia may result, such as weakness, fatigue, light-headedness, rapid heartbeat, rapid breathing and pale color to the skin. It may also cause easy bruising or bleeding, including bleeding gums. GI side effects including sore tongue, stomach upset, weight loss, and diarrhea or constipation. If the deficiency is not corrected, nerve cell damage can result. If this happens, vitamin B deficiency may result in tingling or numbness to the fingers and toes, difficulty walking, mood changes, depression, memory loss, disorientation and, in severe cases, dementia.
The main syndrome of vitamin B deficiency is pernicious anemia. It is characterized by a triad of symptoms:
1. Anemia with bone marrow promegaloblastosis (megaloblastic anemia). This is due to the inhibition of DNA synthesis (specifically purines and thymidine)
2. Gastrointestinal symptoms: alteration in bowel motility, such as mild diarrhea or constipation, and loss of bladder or bowel control. These are thought to be due to defective DNA synthesis inhibiting replication in a site with a high turnover of cells. This may also be due to the autoimmune attack on the parietal cells of the stomach in pernicious anemia. There is an association with GAVE syndrome (commonly called watermelon stomach) and pernicious anemia.
3. Neurological symptoms: Sensory or motor deficiencies (absent reflexes, diminished vibration or soft touch sensation), subacute combined degeneration of spinal cord, seizures, or even symptoms of dementia and or other psychiatric symptoms may be present. Deficiency symptoms in children include developmental delay, regression, irritability, involuntary movements and hypotonia.
The presence of peripheral sensory-motor symptoms or subacute combined degeneration of spinal cord strongly suggests the presence of a B deficiency instead of folate deficiency. Methylmalonic acid, if not properly handled by B, remains in the myelin sheath, causing fragility. Dementia and depression have been associated with this deficiency as well, possibly from the under-production of methionine because of the inability to convert homocysteine into this product. Methionine is a necessary cofactor in the production of several neurotransmitters.
Each of those symptoms can occur either alone or along with others. The neurological complex, defined as "myelosis funicularis", consists of the following symptoms:
1. Impaired perception of deep touch, pressure and vibration, loss of sense of touch, very annoying and persistent paresthesias
2. Ataxia of dorsal chord type
3. Decrease or loss of deep muscle-tendon reflexes
4. Pathological reflexes — Babinski, Rossolimo and others, also severe paresis
Vitamin B deficiency can cause severe and irreversible damage, especially to the brain and nervous system. These symptoms of neuronal damage may not reverse after correction of hematological abnormalities, and the chance of complete reversal decreases with the length of time the neurological symptoms have been present.
Tinnitus may be associated with vitamin B deficiency.
Folate deficiency is a low level of folic acid and derivatives in the body. Also known as vitamin B9, folate is involved in adenosine, guanine, and thymidine synthesis (part of DNA synthesis). Signs of folate deficiency are often subtle. Anemia is a late finding in folate deficiency and folate deficiency anemia is the term given for this medical condition. It is characterized by the appearance of large-sized, abnormal red blood cells (megaloblasts), which form when there are inadequate stores of folic acid within the body.
The common cause of blindness in developing countries is VAD. The WHO estimates 13.8 million children to have some degree of visual loss related to VAD. Night blindness and its worsened condition, xerophthalmia, are markers of VAD, as it can also lead to impaired immune function, cancer, and birth defects. Collections of keratin in the conjunctiva, known as Bitot's spots, are also seen. Imtiaz's sign is the earliest ocular sign of VAD. Conjunctival epithelial defects occur around lateral aspect of the limbus in the subclinical stage of VAD. These conjunctival epithelial defects are not visible on a biomicroscope, but they take up black stain and become readily visible after instillation of kajal (surma); this is called "Imtiaz's sign". Vitamin A deficiency is one of several hypovitaminoses implicated in follicular hyperkeratosis.
Vitamin B refers to a group of chemically similar compounds which can be interconverted in biological systems. Vitamin B is part of the vitamin B group of essential nutrients. Its active form, pyridoxal 5′-phosphate, serves as a coenzyme in some 100 enzyme reactions in amino acid, glucose, and lipid metabolism.
Selenium deficiency in combination with Coxsackievirus infection can lead to Keshan disease, which is potentially fatal. Selenium deficiency also contributes (along with iodine deficiency) to Kashin-Beck disease. The primary symptom of Keshan disease is myocardial necrosis, leading to weakening of the heart. Kashin-Beck disease results in atrophy, degeneration and necrosis of cartilage tissue. Keshan disease also makes the body more susceptible to illness caused by other nutritional, biochemical, or infectious diseases.
Selenium is also necessary for the conversion of the thyroid hormone thyroxine (T4) into its more active counterpart, triiodothyronine, and as such a deficiency can cause symptoms of hypothyroidism, including extreme fatigue, mental slowing, goiter, cretinism, and recurrent miscarriage.
Vitamin D deficiency can be asymptomatic, but may also cause several problems including:
- Osteomalacia, a bone-thinning disorder that occurs exclusively in adults and is characterized by proximal muscle weakness and bone fragility.
- Osteoporosis, a condition characterized by reduced bone mineral density and increased bone fragility.
- Increased risk of fracture
- Rickets, a childhood disease characterized by impeded growth and deformity of the long bones. The earliest sign of subclinical vitamin D deficiency is craniotabes, abnormal softening or thinning of the skull.
- Muscle aches and weakness
- Muscle twitching (fasciculations) is commonly seen due to reduced ionised calcium, arising from a low vitamin D.
- Light-headedness
- Periodontitis, local inflammatory bone loss that can result in tooth loss.
- Pre-eclampsia: There has been an association of vitamin D deficiency and women who develop pre-eclampsia in pregnancy. The exact relationship of these conditions is not well understood. Maternal vitamin D deficiency may affect the baby, causing overt bone disease from before birth and impairment of bone quality after birth.
- Depression: Hypovitaminosis D is a risk factor for depression. Some studies have found that low levels of vitamin D are correlated with depressed feelings and are found in patients who have been diagnosed with depression.
Vitamin D deficiency, or hypovitaminosis D, most commonly results from inadequate sunlight exposure (in particular sunlight with adequate ultraviolet B rays). Vitamin D deficiency can also be caused by inadequate nutritional intake of vitamin D, disorders limiting vitamin D absorption, and conditions impairing vitamin D conversion into active metabolites—including certain liver, kidney, and hereditary disorders. Deficiency impairs bone mineralization, leading to bone softening diseases as rickets in children. It can also worsen osteomalacia and osteoporosis in adults, leading to an increased risk of bone fractures. Muscle weakness is also a common symptom of vitamin D deficiency, further increasing the risk of fall and fracture in adults. Ultraviolet B rays from sunlight is a large source of vitamin D. Salmon, herring, and mackerel, are also sources of Vitamin D. Milk is often fortified with vitamin D. Sometimes bread, juices, and other dairy products are fortified with vitamin D as well. Many multivitamins now contain vitamin D in different amounts.
Vitamin A deficiency (VAD) or hypovitaminosis A is a lack of vitamin A in blood and tissues. It is common in poorer countries, but rarely is seen in more developed countries. Nyctalopia (night blindness) is one of the first signs of VAD. Xerophthalmia, keratomalacia, and complete blindness can also occur since vitamin A has a major role in phototransduction. The three forms of vitamin A include retinols, beta-carotenes, and carotenoids.
Vitamin A deficiency is the leading cause of preventable childhood blindness, and is critical to achieving Millennium Development Goal 4 to reduce child mortality. About 250,000 to 500,000 malnourished children in the developing world go blind each year from a deficiency of vitamin A, around half of whom die within a year of becoming blind. The United Nations Special Session on Children in 2002 set a goal of the elimination of VAD by 2010.
The prevalence of night blindness due to VAD is also high among pregnant women in many developing countries. VAD also contributes to maternal mortality and other poor outcomes in pregnancy and lactation.
VAD also diminishes the ability to fight infections. In countries where children are not immunized, infectious diseases such as measles have higher fatality rates. As elucidated by Alfred Sommer, even mild, subclinical deficiency can also be a problem, as it may increase children's risk of developing respiratory and diarrheal infections, decrease growth rate, slow bone development, and decrease likelihood of survival from serious illness.
VAD is estimated to affect about one-third of children under the age of five around the world. It is estimated to claim the lives of 670,000 children under five annually. Around 250,000–500,000 children in developing countries become blind each year owing to VAD, with the highest prevalence in Southeast Asia and Africa. According to the World Health Organization (WHO), VAD is under control in the United States, but in developing countries, VAD is a significant concern. Globally, 65% of all children aged 6 to 59 months received two doses of vitamin A in 2013, fully protecting them against VAD (80% in the least developed countries).
A vitamin deficiency can cause a disease or syndrome known as an avitaminosis or hypovitaminosis. This usually refers to a long-term deficiency of a vitamin. When caused by inadequate nutrition it can be classed as a "primary deficiency", and when due to an underlying disorder such as malabsorption it can be classed as a "secondary deficiency". An underlying disorder may be metabolic as in a defect converting tryptophan to niacin. It can also be the result of lifestyle choices including smoking and alcohol consumption.
Examples are vitamin A deficiency, folate deficiency, scurvy, vitamin D deficiency, vitamin E deficiency, and vitamin K deficiency. In the medical literature, any of these may also be called by names on the pattern of "hypovitaminosis" or "avitaminosis" + "[letter of vitamin]", for example, hypovitaminosis A, hypovitaminosis C, hypovitaminosis D.
Conversely hypervitaminosis is the syndrome of symptoms caused by over-retention of fat-soluble vitamins in the body.
- Vitamin A deficiency can cause keratomalacia.
- Thiamine (vitamin B1) deficiency causes beriberi and Wernicke–Korsakoff syndrome.
- Riboflavin (vitamin B2) deficiency causes ariboflavinosis.
- Niacin (vitamin B3) deficiency causes pellagra.
- Pantothenic acid (vitamin B5) deficiency causes chronic paresthesia.
- Vitamin B6
- Biotin (vitamin B7) deficiency negatively affects fertility and hair/skin growth. Deficiency can be caused by poor diet or genetic factors (such as mutations in the BTD gene, see multiple carboxylase deficiency).
- Folate (vitamin B9) deficiency is associated with numerous health problems. Fortification of certain foods with folate has drastically reduced the incidence of neural tube defects in countries where such fortification takes place. Deficiency can result from poor diet or genetic factors (such as mutations in the MTHFR gene that lead to compromised folate metabolism).
- Vitamin B12 (cobalamin) deficiency can lead to pernicious anemia, megaloblastic anemia, subacute combined degeneration of spinal cord, and methylmalonic acidemia among other conditions.
- Vitamin C (ascorbic acid) short-term deficiency can lead to weakness, weight loss and general aches and pains. Longer-term depletion may affect the connective tissue. Persistent vitamin C deficiency leads to scurvy.
- Vitamin D (cholecalciferol) deficiency is a known cause of rickets, and has been linked to numerous health problems.
- Vitamin E deficiency causes nerve problems due to poor conduction of electrical impulses along nerves due to changes in nerve membrane structure and function.
- Vitamin K (phylloquinone or menaquinone) deficiency causes impaired coagulation and has also been implicated in osteoporosis
Symptoms may include:
- Abnormal softening of the skull bone (craniotabes—infants and children)
- Blurred vision
- Bone pain or swelling
- Bulging fontanelle (infants)
- Changes in consciousness
- Decreased appetite
- Dizziness
- Double vision (young children)
- Drowsiness
- Headache
- Gastric mucosal calcinosis
- Heart valve calcification
- Hypercalcemia
- Increased intracranial pressure manifesting as cerebral edema, papilledema, and headache (may be referred to as Idiopathic intracranial hypertension)
- Irritability
- Liver damage
- Nausea
- Poor weight gain (infants and children)
- Skin and hair changes
- Cracking at corners of the mouth
- Hair loss
- Higher sensitivity to sunlight
- Oily skin and hair (seborrhea)
- Premature epiphyseal closure
- Skin peeling, itching
- Spontaneous fracture
- Yellow discoloration of the skin (aurantiasis cutis)
- Uremic pruritus
- Vision changes
- Vomiting
Selenium deficiency is relatively rare in healthy well-nourished individuals. Few cases in humans have been reported.
Vitamin K deficiency or hypovitaminosis K is a form of avitaminosis resulting from insufficient vitamin K or vitamin K or both.
Hypervitaminosis A refers to the toxic effects of ingesting too much preformed vitamin A. Symptoms arise as a result of altered bone metabolism and altered metabolism of other fat-soluble vitamins. Hypervitaminosis A is believed to have occurred in early humans, and the problem has persisted throughout human history.
Toxicity results from ingesting too much preformed vitamin A from foods (such as fish or animal liver), supplements, or prescription medications and can be prevented by ingesting no more than the recommended daily amount.
Diagnosis can be difficult, as serum retinol is not sensitive to toxic levels of vitamin A, but there are effective tests available. Hypervitaminosis A is usually treated by stopping intake of the offending food(s), supplement(s), or medication. Most people make a full recovery.
High intake of provitamin carotenoids (such as beta carotene) from vegetables and fruits does not cause hypervitaminosis A, as conversion from carotenoids to the active form of vitamin A is regulated by the body to maintain an optimum level of the vitamin. Carotenoids themselves cannot produce toxicity.
In other animals, riboflavin deficiency results in lack of growth, failure to thrive, and eventual death. Experimental riboflavin deficiency in dogs results in growth failure, weakness, ataxia, and inability to stand. The animals collapse, become comatose, and die. During the deficiency state, dermatitis develops together with hair loss. Other signs include corneal opacity, lenticular cataracts, hemorrhagic adrenals, fatty degeneration of the kidney and liver, and inflammation of the mucous membrane of the gastrointestinal tract. Post-mortem studies in rhesus monkeys fed a riboflavin-deficient diet revealed about one-third the normal amount of riboflavin was present in the liver, which is the main storage organ for riboflavin in mammals. Riboflavin deficiency in birds results in low egg hatch rates.
Riboflavin, also known as vitamin B, is a vitamin found in food and used as a dietary supplement. As a supplement it is used to prevent and treat riboflavin deficiency and prevent migraines. It may be given by mouth or injection.
It is nearly always well tolerated. Normal doses are safe during pregnancy. Riboflavin is in the vitamin B group. It is required by the body for cellular respiration. Food sources include eggs, green vegetables, milk, and meat.
Riboflavin was discovered in 1920, isolated in 1933, and first made in 1935. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. Riboflavin is available as a generic medication and over the counter. In the United States a month of supplements costs less than 25 USD. Some countries require its addition to grains.
Defined as those seen in any macrocytic, megaloblastic anemia:
- Anemia: causing fatigue, conjuctival pallor, pale complexion, and in some cases, a mild icterus (yellowing of the eye).
- Glossitis ("shiny tongue"): shiny, glossy tongue.
- Cheilosis (stomatitis): Inflammation of the edges of the lips and the oral mucosa.
- Tabes dorsalis ("subacute combined degeneration of the spinal cord"): This involves the posterior section of the spinal cord and therefore involves proprioception (sense of position), touch, sense of vibration and in severe cases the lateral corticospinal tract, causing spastic paralysis of the limbs.
- Peripheral neuropathy: tingling sensation in the arms and legs.
- Pancytopenia: decreased number of blood cells of all lineages (RBCs, leucocytes, platelets), due to decreased bone marrow production.
- Methylmalonyl CoA-emia: defined as blood having an unusually high concentration of methylmalonyl CoA.
- Peripheral findings such as hypersegmented neutrophils and large RBCs on high field view of the blood smears.
- Laboratory findings indicating increased MCV (Mean Corpuscular Volume), decreased Hgb/Hct (indicating anemia), and decreased value of vitamin B in the blood.
- Proteinuria: protein found in the urine detected by analysis or by dipstick.
- Reversal of all symptoms except neurological symptoms, by IV injection of vitamin B.
- Schilling test indicating no radioactive vitamin B in the urine. (This test has dropped out of favor and should not be tried in patients with any form of renal failure).
Signs of vitamin E deficiency include the following:
- Neuromuscular problems-such as spinocerebellar ataxia and myopathies.
- Neurological problems-may include dysarthria, absence of deep tendon reflexes, loss of the ability to sense vibration and detect where body parts are in three dimensional space, and positive Babinski sign.
- Hemolytic anemia-due to oxidative damage to red blood cells
- Retinopathy
- Impairment of the immune response
There is also some laboratory evidence that vitamin E deficiency can cause male infertility.
Symptoms include bruising, petechiae, hematomas, oozing of blood at surgical or puncture sites, stomach pains; risk of massive uncontrolled bleeding; cartilage calcification; and severe malformation of developing bone or deposition of insoluble calcium salts in the walls of arteries. In infants, it can cause some birth defects such as underdeveloped face, nose, bones, and fingers.
Vitamin K is changed to its active form in the liver by the enzyme Vitamin K epoxide reductase. Activated vitamin K is then used to gamma carboxylate (and thus activate) certain enzymes involved in coagulation: Factors II, VII, IX, X, and protein C and protein S. Inability to activate the clotting cascade via these factors leads to the bleeding symptoms mentioned above.
Notably, when one examines the lab values in Vitamin K deficiency [see below] the prothrombin time is elevated, but the partial thromboplastin time is normal or only mildly prolonged. This may seem counterintuitive given that the deficiency leads to decreased activity in factors of both the intrinsic pathway (F-IX) which is monitored by PTT, as well as the extrinsic pathway (F-VII) which is monitored by PT. However, factor VII has the shortest half-life of all the factors carboxylated by vitamin K; therefore, when deficient, it is the PT that rises first, since the activated Factor VII is the first to "disappear." In later stages of deficiency, the other factors (which have longer half lives) are able to "catch up," and the PTT becomes elevated as well.
Vitamin E deficiency or hypovitaminosis E is a deficiency of vitamin E. It causes nerve problems due to poor conduction of electrical impulses along nerves due to changes in nerve membrane structure and function.
The classic clinical syndrome for vitamin B deficiency is a seborrhoeic dermatitis-like eruption, atrophic glossitis with ulceration, angular cheilitis, conjunctivitis, intertrigo, and neurologic symptoms of somnolence, confusion, and neuropathy (due to impaired sphingosine synthesis) and sideroblastic anemia (due to impaired heme synthesis).
Less severe cases present with associated with insufficient activities of the coenzyme PLP. The most prominent of the lesions is due to impaired tryptophan–niacin conversion. This can be detected based on urinary excretion of xanthurenic acid after an oral tryptophan load. Vitamin B deficiency can also result in impaired transsulfuration of methionine to cysteine. The PLP-dependent transaminases and glycogen phosphorylase provide the vitamin with its role in gluconeogenesis, so deprivation of vitamin B results in impaired glucose tolerance.
Vitamin D deficiency has become a worldwide health epidemic with clinical rates on the rise. In the years of 2011-12, it was estimated that around 4 million adults were considered deficient in Vitamin D throughout Australia. The Australian Bureau of Statistics (ABS) found 23%, or one in four Australian adults suffer from some form of Vitamin D deficiency. Outlined throughout the article are the causes of increase through subgroups populations, influencing factors and strategies in place to control deficiency rates throughout Australia.
Imerslund–Gräsbeck syndrome, is a rare autosomal recessive, familial form of vitamin B deficiency caused by malfunction of the ""Cubam"" receptor located in the terminal ileum. This receptor is composed of two proteins, amnionless (AMN), and cubilin. A defect in either of these protein components can cause this syndrome. This is a rare disease, with a prevalence about 1 in 200,000, and is usually seen in patients of European ancestry.
Vitamin B is an important vitamin needed for bone marrow functioning, the deficit of which causes decreased marrow output and anemia. Vitamin B has two forms, one of which, along with folate, is important in DNA synthesis. Vitamin B is sensitive to acid deformation in the stomach, so a molecule called haptocorrin (R-factor), protects it in the stomach. In the small bowel, a molecule named intrinsic factor (IF), allows vitamin B to be absorbed in the ileum. IGS is caused by a mutation in the receptors located in the terminal portion of ileum. This is a very rare, and unlikely cause of vitamin B deficiency but is a cause nonetheless.
Hypervitaminosis E is a state of vitamin E toxicity. Since vitamin E can act as an anticoagulant and may increase the risk of bleeding problems, many agencies have set a tolerable upper intake levels (UL) for vitamin E at 1,000 mg (1,500 IU) per day. This UL was established due to an increased incidence of hemorrhaging with higher doses of supplemental vitamin E. Doses of vitamin E above the UL can also magnify the antiplatelet effects of certain drugs such as anti-coagulant medications and aspirin, which can cause life-threatening symptoms in ill patients. Hypervitaminosis E may also counteract vitamin K, leading to a vitamin K deficiency.