Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The effects of a circulatory collapse vary based on the type of collapse it is. Peripheral collapses usually involve abnormally low blood pressure and result in collapsed arteries and/or veins, leading to oxygen deprivation to tissues, organs, and limbs.
Acute collapse can result from heart failure causing the primary vessels of the heart to collapse, perhaps combined with cardiac arrest.
A very large range of medical conditions can cause circulatory collapse. These include, but are not limited to:
- Surgery, particularly on patients who have lost blood.
- Blood clots, including the use of some platelet-activating factor drugs in some animals and humans
- Dengue Fever
- Severe dehydration
- Shock (including, among other types, many cases of cardiogenic shock- e.g., after a myocardial infarction or during heart failure; distributive shock, hypovolemic shock, resulting from large blood loss; and severe cases of septic shock)
- Heart Disease (myocardial infarction- heart attack; acute or chronic congestive or other heart failure, ruptured or dissecting aneurysms; large, especially hemorrhagic, stroke; some untreated congenital heart defects; failed heart transplant)
- Superior mesenteric artery syndrome
- Drugs that affect blood pressure
- Drinking seawater
- As a complication of dialysis
- Intoxicative inhalants
Presentation may be subtle; people with mild contusion may have no symptoms at all. However, pulmonary contusion is frequently associated with signs (objective indications) and symptoms (subjective states), including those indicative of the lung injury itself and of accompanying injuries. Because gas exchange is impaired, signs of low blood oxygen saturation, such as low concentrations of oxygen in arterial blood gas and cyanosis (bluish color of the skin and mucous membranes) are commonly associated. Dyspnea (painful breathing or difficulty breathing) is commonly seen, and tolerance for exercise may be lowered. Rapid breathing and a rapid heart rate are other signs. With more severe contusions, breath sounds heard through a stethoscope may be decreased, or rales (an abnormal crackling sound in the chest accompanying breathing) may be present. People with severe contusions may have bronchorrhea (the production of watery sputum). Wheezing and coughing are other signs. Coughing up blood or bloody sputum is present in up to half of cases. Cardiac output (the volume of blood pumped by the heart) may be reduced, and hypotension (low blood pressure) is frequently present. The area of the chest wall near the contusion may be tender or painful due to associated chest wall injury.
Signs and symptoms take time to develop, and as many as half of cases are asymptomatic at the initial presentation. The more severe the injury, the more quickly symptoms become apparent. In severe cases, symptoms may occur as quickly as three or four hours after the trauma. Hypoxemia (low oxygen concentration in the arterial blood) typically becomes progressively worse over 24–48 hours after injury. In general, pulmonary contusion tends to worsen slowly over a few days, but it may also cause rapid deterioration or death if untreated.
The diagnosis is made by x-ray/MRI appearance and has five juxta-articular classifications and forehead, neck, and shaft classifications indicating early radiological signs.
Early on there is flattening of articular surfaces, thinning of cartilage with osteophyte (spur) formation. In juxta-articular lesions without symptoms, there is dead bone and marrow separated from living bone by a line of dense collagen. Microscopic cysts form, fill with necrotic material and there is massive necrosis with replacement by cancellous bone with collapse of the lesions.
The lesion begins as a random finding on x-ray without symptoms. Symptomatic lesions usually involve joint surfaces, and fracture with attempted healing occurs. This process takes place over months to years and eventually causes disabling arthritis, particularly of the femoral head (hip).
The following staging system is sometimes useful when managing lesions.
- Stage 0 - Intravascular coagulation
- Stage 1 - Dead Bone without repair
- Stage 2 - Dead Bone with repair but without collapse
- Stage 3 - Dead Bone with repair and with collapse
- Stage 4 - Secondary degenerative arthritis
In a study of bone lesions in 281 compressed air workers done by Walder in 1969, 29% of the lesions were in the humeral head (shoulder), 16% in the femoral head (hip), 40% in the lower end of the femur (lower thigh at the knee) and 15% in the upper tibia (knee below the knee cap).
Worsening of the condition from continued decompression in an asymptomatic x-ray finding may occur.
Vascular disease is a class of diseases of the blood vessels – the arteries and veins of the circulatory system of the body. It is a subgroup of cardiovascular disease. Disorders in this vast network of blood vessels, can cause a range of health problems which can be severe or prove fatal.
There are several types of vascular disease, (which is a subgroup of cardiovascular disease), the signs and symptoms depend on which type, among them are:
- Erythromelalgia - a rare peripheral vascular disease where syndromes includes burning pain, increased temperature, erythema and swelling, of mainly the hands and feet are affected.
- Peripheral artery disease – happens when atheromatous plaques build up in the arteries that supply blood to the arms and legs, plaque causes the arteries to narrow or become blocked.
- Renal artery stenosis - is the narrowing of renal arteries that carry blood to the kidneys from the aorta.
- Buerger's disease – is due to small blood vessels that inflame and swell, vessels then narrow or are blocked by blood clots.
- Raynaud's disease – a rare peripheral vascular disorder of constriction of the peripheral blood vessels, in the fingers and toes when the person is cold.
- Disseminated intravascular coagulation – a widespread activation of clotting in the smaller blood vessels.
- Cerebrovascular disease–a group of vascular diseases that affect brain function.
Pulmonary contusion and laceration are injuries to the lung tissue. Pulmonary laceration, in which lung tissue is torn or cut, differs from pulmonary contusion in that the former involves disruption of the macroscopic architecture of the lung, while the latter does not. When lacerations fill with blood, the result is pulmonary hematoma, a collection of blood within the lung tissue. Contusion involves hemorrhage in the alveoli (tiny air-filled sacs responsible for absorbing oxygen), but a hematoma is a discrete clot of blood not interspersed with lung tissue. A collapsed lung can result when the pleural cavity (the space outside the lung) accumulates blood (hemothorax) or air (pneumothorax) or both (hemopneumothorax). These conditions do not inherently involve damage to the lung tissue itself, but they may be associated with it. Injuries to the chest wall are also distinct from but may be associated with lung injuries. Chest wall injuries include rib fractures and flail chest, in which multiple ribs are broken so that a segment of the ribcage is detached from the rest of the chest wall and moves independently.
Dysbaric osteonecrosis or DON is a form of avascular necrosis where there is death of a portion of the bone that is thought to be caused by nitrogen embolism (blockage of the blood vessels by a bubble of nitrogen coming out of solution) in divers. Although the definitive pathologic process is poorly understood, there are several hypotheses:
- Intra- or extravascular nitrogen in bones, "nitrogen embolism".
- Osmotic gas effects due to intramedullary pressure effects.
- fat embolism
- hemoconcentration and increased coagulability.
Patients with intraparenchymal bleeds have symptoms that correspond to the functions controlled by the area of the brain that is damaged by the bleed. Other symptoms include those that indicate a rise in intracranial pressure caused by a large mass putting pressure on the brain.
Intracerebral hemorrhages are often misdiagnosed as subarachnoid hemorrhages due to the similarity in symptoms and signs. A severe headache followed by vomiting is one of the more common symptoms of intracerebral hemorrhage. Another common symptom is a patient can collapse. Some people may experience continuous bleeding from the ear. Some patients may also go into a coma before the bleed is noticed.
Collapsed veins are a common result of chronic use of intravenous injections. They are particularly common where injecting conditions are less than ideal, such as in the context of drug abuse.
Veins may become temporarily blocked if the internal lining of the vein swells in response to repeated injury or irritation. This may be caused by the needle, the substance injected, or donating plasma. Once the swelling subsides, the circulation will often become re-established.
Permanent vein collapse occurs as a consequence of:
- Long-term injecting
- Repeated injections, especially with blunt needles
- Poor technique
- Injection of substances which irritate the veins; in particular, injection of liquid methadone intended for oral use.
Smaller veins may collapse as a consequence of too much suction being used when pulling back against the plunger of the syringe to check that the needle is in the vein. This will pull the sides of the vein together and, especially if they are inflamed, they may stick together causing the vein to block. Removing the needle too quickly after injecting can have a similar effect.
Collapsed veins may never recover. Many smaller veins are created by the body to circulate the blood, but they are not adequate for injections or IVs.
Intracerebral hemorrhage (ICH), also known as cerebral bleed, is a type of intracranial bleed that occurs within the brain tissue or ventricles. Symptoms can include headache, one-sided weakness, vomiting, seizures, decreased level of consciousness, and neck stiffness. Often symptoms get worse over time. Fever is also common. In many cases bleeding is present in both the brain tissue and the ventricles.
Causes include brain trauma, aneurysms, arteriovenous malformations, and brain tumors. The largest risk factors for spontaneous bleeding are high blood pressure and amyloidosis. Other risk factors include alcoholism, low cholesterol, blood thinners, and cocaine use. Diagnosis is typically by CT scan. Other conditions that may present similarly include ischemic stroke.
Treatment should typically be carried out in an intensive care unit. Guidelines recommended decreasing the blood pressure to a systolic of less than 140 mmHg. Blood thinners should be reversed if possible and blood sugar kept in the normal range. Surgery to place a ventricular drain may be used to treat hydrocephalus but corticosteroids should not be used. Surgery to remove the blood is useful in certain cases.
Cerebral bleeding affects about 2.5 per 10,000 people each year. It occurs more often in males and older people. About 44% of those affected die within a month. A good outcome occurs in about 20% of those affected. Strokes were first divided into their two major types, bleeding and insufficient blood flow, in 1823.
The main symptom is usually severe central chest pain. Other symptoms include laboured breathing, voice distortion (as with helium) and subcutaneous emphysema, specifically affecting the face, neck, and chest. Pneumomediastinum can also be characterized by the shortness of breath that is typical of a respiratory system problem. It is often recognized on auscultation by a "crunching" sound timed with the cardiac cycle (Hamman's crunch).
Pnemomediastinum may also present with symptoms mimicking cardiac tamponade as a result of the increased intrapulmonary pressure on venous flow to the heart.
Typically, Mönckeberg's arteriosclerosis is not associated with symptoms unless complicated by atherosclerosis, calciphylaxis, or accompanied by some other disease. However presence of Mönckeberg's arteriosclerosis is associated with poorer prognosis. This is probably due to vascular calcification causing increased arterial stiffness, increased pulse pressure and resulting in exaggerated damage to the heart and kidneys.
Vascular tumors, often referred to as hemangiomas, are the most common tumors in infants, occurring in 1-2%. Prevalence is even higher (10%) in premature infants of very low birth weight. Vascular tumors are characterized by overgrowth of normal vessels, which show increased endothelial proliferation. It can be present at birth, but often appears within a couple of weeks after birth or during infancy. There are different kinds of vascular tumors, but the 4 most common types are: infantile hemangioma, congenital hemangioma, kaposiform hemangioendothelioma and pyogenic granuloma.
All fast-flow malformations are malformations involving arteries. They constitute about 14% of all vascular malformations.
- Arterial malformation
- Arteriovenous fistula (AVF) : a lesion with a direct communication via fistulae between an artery and a vein.
- Arteriovenous malformation : a lesion with a direct connection between an artery and a vein, without an intervening capillary bed, but with an interposed nidus of dysplastic vascular channels in between.
May have no signs and symptoms or they may include:
- cough, but not prominent;
- chest pain (not common);
- breathing difficulty (fast and shallow);
- low oxygen saturation;
- pleural effusion (transudate type);
- cyanosis (late sign);
- increased heart rate.
It is a common misconception that atelectasis causes fever. A study of 100 post-op patients followed with serial chest X-rays and temperature measurements showed that the incidence of fever decreased as the incidence of atelectasis increased. A recent review article summarizing the available published evidence on the association between atelectasis and post-op fever concluded that there is no clinical evidence supporting this doctrine.
Collapse is a sudden and often unannounced loss of postural tone (going weak), often but not necessarily accompanied by loss of consciousness.
If the episode was accompanied by a loss of consciousness, the term syncope is used. The main causes are cardiac (e.g. due to irregular heart beat, low blood pressure), seizures or a psychological cause. The main tool in distinguishing the causes is careful history on the events before, during and after the collapse, from the patient as well as from any possible witnesses. Other investigations may be performed to further strengthen the diagnosis, but many of these have a low yield.
Mönckeberg's arteriosclerosis, or Mönckeberg's sclerosis, also called medial calcific sclerosis or Mönckeberg medial sclerosis, is a form of arteriosclerosis or vessel hardening, where calcium deposits are found in the muscular middle layer of the walls of arteries (the tunica media). It is an example of dystrophic calcification. This condition occurs as an age-related degenerative process. However, it can occur in pseudoxanthoma elasticum and idiopathic arterial calcification of infancy as a pathological condition, as well. Its clinical significance and cause are not well understood and its relationship to atherosclerosis and other forms of vascular calcification are the subject of disagreement.
Mönckeberg's arteriosclerosis is named after Johann Georg Mönckeberg, who first described it in 1903.
Acute fractures will cause severe back pain. Compression fractures which develop gradually, such as in osteoporosis, may initially not cause any symptoms, but will later often lead to back pain and loss of height.
Compression fractures are usually diagnosed on spinal radiographs, where a wedge-shaped vertebra may be visible or there may be loss of height of the vertebra. In addition, bone density measurement may be performed to evaluate for osteoporosis. When a tumor is suspected as the underlying cause, or the fracture was caused by severe trauma, CT or MRI scans may be performed.
Atelectasis is the collapse or closure of a lung resulting in reduced or absent gas exchange. It may affect part or all of a lung. It is usually unilateral. It is a condition where the alveoli are deflated down to little or no volume, as distinct from pulmonary consolidation, in which they are filled with liquid. It is often called a collapsed lung, although that term may also refer to pneumothorax.
It is a very common finding in chest x-rays and other radiological studies, and may be caused by normal exhalation or by various medical conditions. Although frequently described as a collapse of lung tissue, atelectasis is not synonymous with a pneumothorax, which is a more specific condition that features atelectasis. Acute atelectasis may occur as a post-operative complication or as a result of surfactant deficiency. In premature neonates, this leads to infant respiratory distress syndrome.
The term uses combining forms of "atel-" + "", from , "incomplete" + ἔκτασις, "extension".
Pneumomediastinum (from Greek "pneuma" – "air", also known as mediastinal emphysema) is (abnormal presence of air or other gas) in the mediastinum. First described in 1819 by René Laennec, the condition can result from physical trauma or other situations that lead to air escaping from the lungs, airways, or bowel into the chest cavity.
Ventilator-associated lung injury (VALI) is an acute lung injury that develops during mechanical ventilation and is termed ventilator-induced lung injury (VILI) if it can be proven that the mechanical ventilation caused the acute lung injury. In contrast, ventilator-associated lung injury (VALI) exists if the cause cannot be proven. VALI is the appropriate term in most situations because it is virtually impossible to prove what actually caused the lung injury in the hospital.
Congenital stenosis of vena cava is a congenital anomaly in which the superior vena cava or inferior vena cava has an aberrant interruption or coarctation.
In some cases, it can be asymptomatic, and in other cases it can lead to fluid accumulation and cardiopulmonary collapse.
Initially symptoms asymptomatic or some patients do not experience symptoms at all. In a progressive TBM case symptoms include:
- shortness of breath
- a cough
- mucus build up
- wheezing
- difficulty in breathing
- bluish coloration to skin around the nose and mouth
Symptoms may become worse if the patient is stressed, sick, lying down, or forcing a cough.
- Chronic cough