Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms of brain ischemia reflect the anatomical region undergoing blood and oxygen deprivation. Ischemia within the arteries branching from the internal carotid artery may result in symptoms such as blindness in one eye, weakness in one arm or leg, or weakness in one entire side of the body. Ischemia within the arteries branching from the vertebral arteries in the back of the brain may result in symptoms such as dizziness, vertigo, double vision, or weakness on both sides of the body . Other symptoms include difficulty speaking, slurred speech, and the loss of coordination. The symptoms of brain ischemia range from mild to severe. Further, symptoms can last from a few seconds to a few minutes or extended periods of time. If the brain becomes damaged irreversibly and infarction occurs, the symptoms may be permanent.
Similar to cerebral hypoxia, severe or prolonged brain ischemia will result in unconsciousness, brain damage or death, mediated by the ischemic cascade.
Multiple cerebral ischemic events may lead to subcortical ischemic depression, also known as vascular depression. This condition is most commonly seen in elderly depressed patients. Late onset depression is increasingly seen as a distinct sub-type of depression, and can be detected with an MRI.
Global brain ischemia occurs when blood flow to the brain is halted or drastically reduced. This is commonly caused by cardiac arrest. If sufficient circulation is restored within a short period of time, symptoms may be transient. However, if a significant amount of time passes before restoration, brain damage may be permanent. While reperfusion may be essential to protecting as much brain tissue as possible, it may also lead to reperfusion injury. Reperfusion injury is classified as the damage that ensues after restoration of blood supply to ischemic tissue.
The most common presentation of cerebrovascular diseases is an acute stroke, which occurs when blood supply to the brain is compromised. Symptoms of stroke are usually rapid in onset, and may include weakness of one side of the face or body, numbness on one side of the face or body, inability to produce or understand speech, vision changes, and balance difficulties. Hemorrhagic strokes can present with a very severe, sudden headache associated with vomiting, neck stiffness, and decreased consciousness. Symptoms vary depending on the location and the size of the area of involvement of the stroke. Edema, or swelling, of the brain may occur which increases intracranial pressure and may result in brain herniation. A stroke may result in coma or death if it involves key areas of the brain.
Other symptoms of cerebrovascular disease include migraines, seizures, epilepsy, or cognitive decline. However, cerebrovascular disease may go undetected for years until an acute stroke occurs. In addition, patients with some rare congenital cerebrovascular diseases may begin to have these symptoms in childhood.
Stroke presentations which are particularly suggestive of a watershed stroke include bilateral visual loss, stupor, and weakness of the proximal limbs, sparing the face, hands and feet.
Watershed stroke symptoms are due to the reduced blood flow to all parts of the body, specifically the brain, thus leading to brain damage. Initial symptoms, as promoted by the American Stroke Association, are FAST (stroke), representing F = Facial weakness (droop), A = Arm weakness (drift), S = Speech difficulty (slur), and T = Time to act (priority of intervention).
All strokes are considered a medical emergency. Any one of these symptoms, whether seen alone or in combination, should be assumed to be stroke until proven otherwise. Emergency medical help should be sought IMMEDIATELY if any or all of these symptoms are seen or experienced. Early diagnosis and timely medical intervention can drastically reduce the severity of a stroke, limit damage to the brain, improve the chances of a full recovery and reduce recovery times massively.
After the initial stroke, other symptoms depend on the area of the brain affected. If one of the three central nervous system pathways is affected, symptoms can include numbness, reduced sensation, and hyperreflexia.
Most often, the side of the brain damaged results in body defects on the opposite side. Since the cranial nerves originate from the brainstem, damage to this area can lead to defects in the function of these nerves. Symptoms can include altered breathing, problems with balance, drooping of eyelids, and decreased sensation in the face.
Damage to the cerebral cortex may lead to aphasia or confusion and damage to the cerebellum may lead to lack of motor movement.
Symptoms of cerebral infarction are determined by the parts of the brain affected. If the infarct is located in primary motor cortex, contralateral hemiparesis is said to occur. With brainstem localization, brainstem syndromes are typical: Wallenberg's syndrome, Weber's syndrome, Millard-Gubler syndrome, Benedikt syndrome or others.
Infarctions will result in weakness and loss of sensation on the opposite side of the body. Physical examination of the head area will reveal abnormal pupil dilation, light reaction and lack of eye movement on opposite side. If the infarction occurs on the left side brain, speech will be slurred. Reflexes may be aggravated as well.
Patients with intraparenchymal bleeds have symptoms that correspond to the functions controlled by the area of the brain that is damaged by the bleed. Other symptoms include those that indicate a rise in intracranial pressure caused by a large mass putting pressure on the brain.
Intracerebral hemorrhages are often misdiagnosed as subarachnoid hemorrhages due to the similarity in symptoms and signs. A severe headache followed by vomiting is one of the more common symptoms of intracerebral hemorrhage. Another common symptom is a patient can collapse. Some people may experience continuous bleeding from the ear. Some patients may also go into a coma before the bleed is noticed.
Cerebrovascular disease includes a variety of medical conditions that affect the blood vessels of the brain and the cerebral circulation. Arteries supplying oxygen and nutrients to the brain are often damaged or deformed in these disorders. The most common presentation of cerebrovascular disease is an ischemic stroke or mini-stroke and sometimes a hemorrhagic stroke. Hypertension (high blood pressure) is the most important contributing risk factor for stroke and cerebrovascular diseases as it can change the structure of blood vessels and result in atherosclerosis. Atherosclerosis narrows blood vessels in the brain, resulting in decreased cerebral perfusion. Other risk factors that contribute to stroke include smoking and diabetes. Narrowed cerebral arteries can lead to ischemic stroke, but continually elevated blood pressure can also cause tearing of vessels, leading to a hemorrhagic stroke.
A stroke usually presents with an abrupt onset of a neurologic deficit - such as hemiplegia (one-sided weakness), numbness, aphasia (language impairment), or ataxia (loss of coordination) - attributable to a focal vascular lesion. The neurologic symptoms manifest within seconds because neurons need a continual supply of nutrients, including glucose and oxygen, that are provided by the blood. Therefore if blood supply to the brain is impeded, injury and energy failure is rapid.
Besides hypertension, there are also many less common causes of cerebrovascular disease, including those that are congenital or idiopathic and include CADASIL, aneurysms, amyloid angiopathy, arteriovenous malformations, fistulas, and arterial dissections. Many of these diseases can be asymptomatic until an acute event, such as a stroke, occurs. Cerebrovascular diseases can also present less commonly with headache or seizures. Any of these diseases can result in vascular dementia due to ischemic damage to the brain.
There are various classification systems for a cerebral infarction.
- The Oxford Community Stroke Project classification (OCSP, also known as the Bamford or Oxford classification) relies primarily on the initial symptoms. Based on the extent of the symptoms, the stroke episode is classified as total anterior circulation infarct (TACI), partial anterior circulation infarct (PACI), lacunar infarct (LACI) or posterior circulation infarct (POCI). These four entities predict the extent of the stroke, the area of the brain affected, the underlying cause, and the prognosis.
- The TOAST (Trial of Org 10172 in Acute Stroke Treatment) classification is based on clinical symptoms as well as results of further investigations; on this basis, a stroke is classified as being due to (1) thrombosis or embolism due to atherosclerosis of a large artery, (2) embolism of cardiac origin, (3) occlusion of a small blood vessel, (4) other determined cause, (5) undetermined cause (two possible causes, no cause identified, or incomplete investigation).
Loss of consciousness, headache, and vomiting usually occur more often in hemorrhagic stroke than in thrombosis because of the increased intracranial pressure from the leaking blood compressing the brain.
If symptoms are maximal at onset, the cause is more likely to be a subarachnoid hemorrhage or an embolic stroke.
Cerebellar stroke syndrome is a condition in which the circulation to the cerebellum is impaired due to a lesion of the superior cerebellar artery, anterior inferior cerebellar artery or the posterior inferior cerebellar artery.
Cardinal signs include vertigo, headache, vomiting, and ataxia.
Cerebellar strokes account for only 2-3% of the 600 000 strokes that occur each year in the United States. They are far less common than strokes which occur in the cerebral hemispheres. In recent years mortality rates have decreased due to advancements in health care which include earlier diagnosis through MRI and CT scanning. Advancements have also been made which allow earlier management for common complications of cerebellar stroke such as brainstem compression and hydrocephalus.
Research is still needed in the area of cerebellar stroke management; however, it has been proposed that several factors may lead to poor outcomes in individuals who suffer from cerebellar stroke. These factors include:
1. Declining levels of consciousness
2. New signs of brainstem involvement
3. Progressing Hydrocephalus
4. Stroke to the midline of the cerebellum (a.k.a. the vermis)
If the area of the brain affected contains one of the three prominent central nervous system pathways—the spinothalamic tract, corticospinal tract, and the posterior column–medial lemniscus pathway, symptoms may include:
- hemiplegia and muscle weakness of the face
- numbness
- reduction in sensory or vibratory sensation
- initial flaccidity (reduced muscle tone), replaced by spasticity (increased muscle tone), excessive reflexes, and obligatory synergies.
In most cases, the symptoms affect only one side of the body (unilateral). Depending on the part of the brain affected, the defect in the brain is "usually" on the opposite side of the body. However, since these pathways also travel in the spinal cord and any lesion there can also produce these symptoms, the presence of any one of these symptoms does not necessarily indicate a stroke.In addition to the above CNS pathways, the "brainstem" gives rise to most of the twelve cranial nerves. A brainstem stroke affecting the brainstem and brain, therefore, can produce symptoms relating to deficits in these cranial nerves:
- altered smell, taste, hearing, or vision (total or partial)
- drooping of eyelid (ptosis) and weakness of ocular muscles
- decreased reflexes: gag, swallow, pupil reactivity to light
- decreased sensation and muscle weakness of the face
- balance problems and nystagmus
- altered breathing and heart rate
- weakness in sternocleidomastoid muscle with inability to turn head to one side
- weakness in tongue (inability to stick out the tongue or move it from side to side)
If the "cerebral cortex" is involved, the CNS pathways can again be affected, but also can produce the following symptoms:
- aphasia (difficulty with verbal expression, auditory comprehension, reading and writing; Broca's or Wernicke's area typically involved)
- dysarthria (motor speech disorder resulting from neurological injury)
- apraxia (altered voluntary movements)
- visual field defect
- memory deficits (involvement of temporal lobe)
- hemineglect (involvement of parietal lobe)
- disorganized thinking, confusion, hypersexual gestures (with involvement of frontal lobe)
- lack of insight of his or her, usually stroke-related, disability
If the "cerebellum" is involved, ataxia might be present and this includes:
- altered walking gait
- altered movement coordination
- vertigo and or disequilibrium
A Total Anterior Circulation Infarct (TACI) is a type of cerebral infarction affecting the entire anterior circulation supplying one side of the brain.
Total Anterior Circulation Stroke Syndrome (TACS) refers to the symptoms of a patient who clinically appears to have suffered from a total anterior circulation infarct, but who has not yet had any diagnostic imaging (e.g. CT Scan) to confirm the diagnosis.
It is diagnosed when it causes all 3 of the following symptoms:
- Higher dysfunction
- Dysphasia
- Visuospatial disturbances
- Decreased level of consciousness
- Homonymous hemianopia
- Motor and Sensory Defects (≥2/3 of face, arm, leg)
For more information, see stroke.
Partial Anterior Circulation Infarct (PACI) is a type of cerebral infarction affecting part of the anterior circulation supplying one side of the brain.
Partial Anterior Circulation Stroke Syndrome (PACS) refers to the symptoms of a patient who clinically appears to have suffered from a partial anterior circulation infarct, but who has not yet had any diagnostic imaging (e.g. CT Scan) to confirm the diagnosis.
It is diagnosed by any one of the following
- 2 out of 3 features of
- Higher dysfunction
- Dysphasia
- Visuospatial disturbances
- Homonymous hemianopia
- Motor and Sensory Defects (>2/3 of face, arm, leg)
- Higher dysfunction alone
- Partial Motor or Sensory Defect
If all of the above symptoms are present, a Total Anterior Circulation Infarct is more likely.
For more information, see stroke.
Intracerebral hemorrhage (ICH), also known as cerebral bleed, is a type of intracranial bleed that occurs within the brain tissue or ventricles. Symptoms can include headache, one-sided weakness, vomiting, seizures, decreased level of consciousness, and neck stiffness. Often symptoms get worse over time. Fever is also common. In many cases bleeding is present in both the brain tissue and the ventricles.
Causes include brain trauma, aneurysms, arteriovenous malformations, and brain tumors. The largest risk factors for spontaneous bleeding are high blood pressure and amyloidosis. Other risk factors include alcoholism, low cholesterol, blood thinners, and cocaine use. Diagnosis is typically by CT scan. Other conditions that may present similarly include ischemic stroke.
Treatment should typically be carried out in an intensive care unit. Guidelines recommended decreasing the blood pressure to a systolic of less than 140 mmHg. Blood thinners should be reversed if possible and blood sugar kept in the normal range. Surgery to place a ventricular drain may be used to treat hydrocephalus but corticosteroids should not be used. Surgery to remove the blood is useful in certain cases.
Cerebral bleeding affects about 2.5 per 10,000 people each year. It occurs more often in males and older people. About 44% of those affected die within a month. A good outcome occurs in about 20% of those affected. Strokes were first divided into their two major types, bleeding and insufficient blood flow, in 1823.
The classic symptom of subarachnoid hemorrhage is thunderclap headache (a headache described as "like being kicked in the head", or the "worst ever", developing over seconds to minutes). This headache often pulsates towards the occiput (the back of the head). About one-third of people have no symptoms apart from the characteristic headache, and about one in ten people who seek medical care with this symptom are later diagnosed with a subarachnoid hemorrhage. Vomiting may be present, and 1 in 14 have seizures. Confusion, decreased level of consciousness or coma may be present, as may neck stiffness and other signs of meningism.
Neck stiffness usually presents six hours after initial onset of SAH. Isolated dilation of a pupil and loss of the pupillary light reflex may reflect brain herniation as a result of rising intracranial pressure (pressure inside the skull). Intraocular hemorrhage (bleeding into the eyeball) may occur in response to the raised pressure: subhyaloid hemorrhage (bleeding under the hyaloid membrane, which envelops the vitreous body of the eye) and vitreous hemorrhage may be visible on fundoscopy. This is known as Terson syndrome (occurring in 3–13 percent of cases) and is more common in more severe SAH.
Oculomotor nerve abnormalities (affected eye looking downward and outward and inability to lift the eyelid on the same side) or (loss of movement) may indicate bleeding from the posterior communicating artery. Seizures are more common if the hemorrhage is from an aneurysm; it is otherwise difficult to predict the site and origin of the hemorrhage from the symptoms. SAH in a person known to have seizures is often diagnostic of a cerebral arteriovenous malformation.
The combination of intracerebral hemorrhage and raised intracranial pressure (if present) leads to a "sympathetic surge", i.e. over-activation of the sympathetic system. This is thought to occur through two mechanisms, a direct effect on the medulla that leads to activation of the descending sympathetic nervous system and a local release of inflammatory mediators that circulate to the peripheral circulation where they activate the sympathetic system. As a consequence of the sympathetic surge there is a sudden increase in blood pressure; mediated by increased contractility of the ventricle and increased vasoconstriction leading to increased systemic vascular resistance. The consequences of this sympathetic surge can be sudden, severe, and are frequently life-threatening. The high plasma concentrations of adrenaline also may cause cardiac arrhythmias (irregularities in the heart rate and rhythm), electrocardiographic changes (in 27 percent of cases) and cardiac arrest (in 3 percent of cases) may occur rapidly after the onset of hemorrhage. A further consequence of this process is neurogenic pulmonary edema where a process of increased pressure within the pulmonary circulation causes leaking of fluid from the pulmonary capillaries into the air spaces, the alveoli, of the lung.
Subarachnoid hemorrhage may also occur in people who have had a head injury. Symptoms may include headache, decreased level of consciousness and hemiparesis (weakness of one side of the body). SAH is a frequent occurrence in traumatic brain injury, and carries a poor prognosis if it is associated with deterioration in the level of consciousness.
While thunderclap headache is the characteristic symptom of subarachnoid hemorrhage, less than 10% of those with concerning symptoms have SAH on investigations. A number of other causes may need to be considered.
Many diseases that cause cerebral atrophy are associated with dementia, seizures, and a group of language disorders called the aphasias. Dementia is characterized by a progressive impairment of memory and intellectual function that is severe enough to interfere with social and work skills. Memory, orientation, abstraction, ability to learn, visual-spatial perception, and higher executive functions such as planning, organizing and sequencing may also be impaired. Seizures can take different forms, appearing as disorientation, strange repetitive movements, loss of consciousness, or convulsions. Aphasias are a group of disorders characterized by disturbances in speaking and understanding language. Receptive aphasia causes impaired comprehension. Expressive aphasia is reflected in odd choices of words, the use of partial phrases, disjointed clauses, and incomplete sentences.
A Posterior Circulation Infarct (POCI) is a type of cerebral infarction affecting the posterior circulation supplying one side of the brain.
Posterior Circulation Stroke Syndrome (POCS) refers to the symptoms of a patient who clinically appears to have had a posterior circulation infarct, but who has not yet had any diagnostic imaging (e.g. CT Scan) to confirm the diagnosis.
It can cause the following symptoms:
- Cranial nerve palsy AND contralateral motor/sensory defect
- motor or sensory defect
- Eye movement problems (e.g.nystagmus)
- Cerebellar dysfunction
- Isolated homonymous hemianopia
It has also been associated with deafness.
The clinical presentation of hydrocephalus varies with chronicity. Acute dilatation of the ventricular system is more likely to manifest with the nonspecific signs and symptoms of increased intracranial pressure. By contrast chronic dilatation (especially in the elderly population) may have a more insidious onset presenting, for instance, with Hakim's triad (Adams triad).
Symptoms of increased intracranial pressure may include headaches, vomiting, nausea, papilledema, sleepiness or coma. Elevated intracranial pressure may result in uncal or tonsillar herniation, with resulting life-threatening brain stem compression.
Hakim's triad of gait instability, urinary incontinence and dementia is a relatively typical manifestation of the distinct entity normal pressure hydrocephalus (NPH). Focal neurological deficits may also occur, such as abducens nerve palsy and vertical gaze palsy (Parinaud syndrome due to compression of the quadrigeminal plate, where the neural centers coordinating the conjugated vertical eye movement are located). The symptoms depend on the cause of the blockage, the person's age, and how much brain tissue has been damaged by the swelling.
In infants with hydrocephalus, CSF builds up in the central nervous system, causing the fontanelle (soft spot) to bulge and the head to be larger than expected. Early symptoms may also include:
- Eyes that appear to gaze downward;
- Irritability;
- Seizures;
- Separated sutures;
- Sleepiness;
- Vomiting.
Symptoms that may occur in older children can include:
- Brief, shrill, high-pitched cry;
- Changes in personality, memory, or the ability to reason or think;
- Changes in facial appearance and eye spacing;
- Crossed eyes or uncontrolled eye movements;
- Difficulty feeding;
- Excessive sleepiness;
- Headache;
- Irritability, poor temper control;
- Loss of bladder control (urinary incontinence);
- Loss of coordination and trouble walking;
- Muscle spasticity (spasm);
- Slow growth (child 0–5 years);
- Slow or restricted movement;
- Vomiting.
Because hydrocephalus can injure the brain, thought and behavior may be adversely affected. Learning disabilities including short-term memory loss are common among those with hydrocephalus, who tend to score better on verbal IQ than on performance IQ, which is thought to reflect the distribution of nerve damage to the brain. However, the severity of hydrocephalus can differ considerably between individuals and some are of average or above-average intelligence. Someone with hydrocephalus may have coordination and visual problems, problems with coordination, or may be clumsy. They may reach puberty earlier than the average child (see precocious puberty). About one in four develops epilepsy.
A cerebral arteriovenous malformation (cerebral AVM, CAVM, cAVM) is an abnormal connection between the arteries and veins in the brain—specifically, an arteriovenous malformation in the cerebrum.
The hallmark of encephalopathy is an altered mental state. Characteristic of the altered mental state is impairment of the cognition, attention, orientation, sleep–wake cycle and consciousness. An altered state of consciousness may range from failure of selective attention to drowsiness. Hypervigilance may be present; with or without: congnitive deficits, headache, epileptic seizures, myoclonus (involuntary twitching of a muscle or group of muscles) or asterixis ("flapping tremor" of the hand when wrist is extended).
Depending on the type and severity of encephalopathy, common neurological symptoms are loss of cognitive function, subtle personality changes, inability to concentrate. Other neurological signs may include dysarthria, hypomimia, problems with movements (they can be clumsy or slow), ataxia, tremor. Another neurological signs may include involuntary grasping and sucking motions, nystagmus (rapid, involuntary eye movement), jactitation (restless picking at things characteristic of severe infection), and respiratory abnormalities such as Cheyne-Stokes respiration (cyclic waxing and waning of tidal volume), apneustic respirations and post-hypercapnic apnea. Focal neurological deficits are less common.
Encephalopathies exhibits both neurologic and psychopathologic symptoms.
A silent stroke is a stroke that does not have any outward symptoms associated with stroke, and the patient is typically unaware they have suffered a stroke. Despite not causing identifiable symptoms a silent stroke still causes damage to the brain, and places the patient at increased risk for both transient ischemic attack and major stroke in the future. In a broad study in 1998, more than 11 million people were estimated to have experienced a stroke in the United States. Approximately 770,000 of these strokes were symptomatic and 11 million were first-ever silent MRI infarcts or hemorrhages. Silent strokes typically cause lesions which are detected via the use of neuroimaging such as MRI. The risk of silent stroke increases with age but may also affect younger adults. Women appear to be at increased risk for silent stroke, with hypertension and current cigarette smoking being amongst the predisposing factors.
These types of strokes include lacunar and other ischemic strokes and minor hemorrhages. They may also include leukoaraiosis (changes in the white matter of the brain): the white matter is more susceptible to vascular blockage due to reduced amount of blood vessels as compared to the cerebral cortex. These strokes are termed "silent" because they typically affect "silent" regions of the brain that do not cause a noticeable change in an afflicted person’s motor functions such as contralateral paralysis, slurred speech, pain, or an alteration in the sense of touch. A silent stroke typically affects regions of the brain associated with various thought processes, mood regulation and cognitive functions and is a leading cause of vascular cognitive impairment and may also lead to a loss of urinary bladder control.
In the Cardiovascular Health Study, a population study conducted among 3,660 adults over the age of 65. 31% showed evidence of silent stroke in neuroimaging studies utilizing MRI. These individuals were unaware they had suffered a stroke. It is estimated that silent strokes are five times more common than symptomatic stroke.
A silent stroke differs from a transient ischemic attack (TIA). In TIA symptoms of stroke are exhibited which may last from a few minutes to 24 hours before resolving. A TIA is a risk factor for having a major stroke and subsequent silent strokes in the future.
Cerebral atrophy is a common feature of many of the diseases that affect the brain. Atrophy of any tissue means a decrement in the size of the cell, which can be due to progressive loss of cytoplasmic proteins. In brain tissue, atrophy describes a loss of neurons and the connections between them. Atrophy can be generalized, which means that all of the brain has shrunk; or it can be focal, affecting only a limited area of the brain and resulting in a decrease of the functions that area of the brain controls. If the cerebral hemispheres (the two lobes of the brain that form the cerebrum) are affected, conscious thought and voluntary processes may be impaired.
Some degree of cerebral shrinkage occurs naturally with age; after the brain completes growth and attains its maximum mass at around age 25, it gradually loses mass with each decade of life, although the rate of loss is comparatively tiny until the age of 60, when approximately .5 to 1% of brain volume is lost per year. By age 75, the brain is an average of 15% smaller than it was at 25. Some areas of the brain such as short-term memory are affected more than others and men lose more brain mass overall than women.
Brain atrophy does not affect all regions with the same intensity as shown by neuroimaging.
Subarachnoid hemorrhage (SAH) is bleeding into the subarachnoid space — the area between the arachnoid membrane and the pia mater surrounding the brain. Symptoms may include a severe headache of rapid onset, vomiting, decreased level of consciousness, fever, and sometimes seizures. Neck stiffness or neck pain are also relatively common. In about a quarter of people a small bleed with resolving symptoms occurs within a month of a larger bleed.
SAH may occur as a result of a head injury or spontaneously, usually from a ruptured cerebral aneurysm. Risk factors for spontaneous cases included high blood pressure, smoking, family history, alcoholism, and cocaine use. Generally, the diagnosis can be determined by a CT scan of the head if done within six hours. Occasionally a lumbar puncture is also required. After confirmation further tests are usually performed to determine the underlying cause.
Treatment is by prompt neurosurgery or radiologically guided interventions. Medications such as labetalol may be required to lower the blood pressure until repair can occur. Efforts to treat fevers are also recommended. Nimodipine, a calcium channel blocker, is frequently used to prevent vasospasm. Routine use medications to prevent further seizures is of unclear benefit. Nearly half of people with a SAH due to an underlying aneurysm die within 30 days and about a third who survive have ongoing problems. 10–15 percent die before reaching a hospital.
Spontaneous SAH occurs in about one per 10,000 people per year. Females are more commonly affected than males. While it becomes more common with age, about 50% of people present under 55 years old. It is a form of stroke and comprises about 5 percent of all strokes. Surgery for aneurysms was introduced in the 1930s. Since the 1990s many aneurysms are treated by a less invasive procedure called "coiling", which is carried out through a large blood vessel.
The most frequently observed problems, related to an AVM, are headaches and seizures, backaches, neckaches and eventual nausea, as the coagulated blood makes its way down to be dissolved in the individual's spinal fluid. It is supposed that 15% of the population, at detection, have no symptoms at all. Other common symptoms are a pulsing noise in the head, progressive weakness and numbness and vision changes as well as debilitating, excruciating pain.
In serious cases, the blood vessels rupture and there is bleeding within the brain (intracranial hemorrhage). Nevertheless, in more than half of patients with AVM, hemorrhage is the first symptom. Symptoms due to bleeding include loss of consciousness, sudden and severe headache, nausea, vomiting, incontinence, and blurred vision, amongst others. Impairments caused by local brain tissue damage on the bleed site are also possible, including seizure, one-sided weakness (hemiparesis), a loss of touch sensation on one side of the body and deficits in language processing (aphasia). Ruptured AVMs are responsible for considerable mortality and morbidity.
AVMs in certain critical locations may stop the circulation of the cerebrospinal fluid, causing accumulation of the fluid within the skull and giving rise to a clinical condition called hydrocephalus. A stiff neck can occur as the result of increased pressure within the skull and irritation of the meninges.