Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms of toxic shock syndrome vary depending on the underlying cause. TSS resulting from infection with the bacterium "Staphylococcus aureus" typically manifests in otherwise healthy individuals via signs and symptoms including high fever, accompanied by low blood pressure, malaise and confusion, which can rapidly progress to stupor, coma, and multiple organ failure. The characteristic rash, often seen early in the course of illness, resembles a sunburn, and can involve any region of the body including the lips, mouth, eyes, palms and soles. In patients who survive the initial phase of the infection, the rash desquamates, or peels off, after 10–14 days.
In contrast, TSS caused by the bacterium "Streptococcus pyogenes", or TSLS, typically presents in people with pre-existing skin infections with the bacteria. These individuals often experience severe pain at the site of the skin infection, followed by rapid progression of symptoms as described above for TSS. In contrast to TSS caused by "Staphylococcus", streptococcal TSS less often involves a sunburn-like rash.
Toxic shock syndrome (TSS) is a condition caused by bacterial toxins. Symptoms may include fever, rash, skin peeling, and low blood pressure. There may also be symptoms related to the specific underlying infection such as mastitis, osteomyelitis, necrotising fasciitis, or pneumonia.
TSS is caused by bacteria of either the "Streptococcus pyogenes" or "Staphylococcus aureus" type. Streptococcal toxic shock syndrome (STSS) is sometimes referred to as toxic shock-like syndrome (TSLS). The underlying mechanism involves the production of superantigens during an invasive streptococcus infection or a localized staphylococcus infection. Risk factors for the staphylococcal type include the use of very absorbent tampons and skin lesions in young children. Diagnosis is typically based on symptoms.
Treatment includes antibiotics, incision and drainage of any abscesses, and possibly intravenous immunoglobulin. The need for rapid removal of infected tissue via surgery in those with a streptococcal cause while commonly recommended is poorly supported by the evidence. Some recommend delaying surgical debridement. The overall risk of death in streptococcal disease is about 50% while in staphylococcal disease it is around 5%. Death may occur within 2 days.
In the United States streptococcal TSS occurs in about 3 per 100,000 per year while staphylococcal TSS occurs in about 0.5 per 100,000 per year. The condition is more common in the developing world. It was first described in 1927. Due to the association with very absorbent tampons, these products were removed from sale.
Septic shock is a serious medical condition that occurs when sepsis, which is organ injury or damage in response to infection, leads to dangerously low blood pressure and abnormalities in cellular metabolism.
The primary infection is most commonly caused by bacteria, but also may be by fungi, viruses or parasites. It may be located in any part of the body, but most commonly in the lungs, brain, urinary tract, skin or abdominal organs. It can cause multiple organ dysfunction syndrome (formerly known as multiple organ failure) and death.
Frequently, people with septic shock are cared for in intensive care units. It most commonly affects children, immunocompromised individuals, and the elderly, as their immune systems cannot deal with infection so effectively as those of healthy adults. The mortality rate from septic shock is approximately 25–50%.
Septic shock is a subclass of distributive shock, a condition in which abnormal distribution of blood flow in the smallest blood vessels results in inadequate blood supply to the body tissues, resulting in ischemia and organ dysfunction. Septic shock refers specifically to distributive shock due to sepsis as a result of infection.
Septic shock may be defined as sepsis-induced low blood pressure that persists despite treatment with intravenous fluids. Low blood pressure reduces tissue perfusion pressure, causing the tissue hypoxia that is characteristic of shock. Cytokines released in a large scale inflammatory response result in massive vasodilation, increased capillary permeability, decreased systemic vascular resistance, and low blood pressure. Finally, in an attempt to offset decreased blood pressure, ventricular dilatation and myocardial dysfunction occur.
Septic shock may be regarded as a stage of SIRS (Systemic Inflammatory Response Syndrome), in which sepsis, severe sepsis and multiple organ dysfunction syndrome (MODS) represent different stages of a pathophysiological process. If an organism cannot cope with an infection, it may lead to a systemic response - sepsis, which may further progress to severe sepsis, septic shock, organ failure, and eventually, result in death.
Sepsis is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. Common signs and symptoms include fever, increased heart rate, increased breathing rate, and confusion. There also may be symptoms related to a specific infection, such as a cough with pneumonia, or painful urination with a kidney infection. In the very young, old, and people with a weakened immune system, there may be no symptoms of a specific infection and the body temperature may be low or normal, rather than high. Severe sepsis is sepsis causing poor organ function or insufficient blood flow. Insufficient blood flow may be evident by low blood pressure, high blood lactate, or low urine output. Septic shock is low blood pressure due to sepsis that does not improve after reasonable amounts of intravenous fluids are given.
Sepsis is caused by an immune response triggered by an infection. Most commonly, the infection is bacterial, but it may also be from fungi, viruses, or parasites. Common locations for the primary infection include lungs, brain, urinary tract, skin, and abdominal organs. Risk factors include young or old age, a weakened immune system from conditions such as cancer or diabetes, major trauma, or burns. An older method of diagnosis was based on meeting at least two systemic inflammatory response syndrome (SIRS) criteria due to a presumed infection. In 2016, SIRS was replaced with qSOFA which is two of the following three: increased breathing rate, change in level of consciousness, and low blood pressure. Blood cultures are recommended preferably before antibiotics are started, however, infection of the blood is not required for the diagnosis. Medical imaging should be used to look for the possible location of infection. Other potential causes of similar signs and symptoms include anaphylaxis, adrenal insufficiency, low blood volume, heart failure, and pulmonary embolism, among others.
Sepsis usually is treated with intravenous fluids and antibiotics. Typically, antibiotics are given as soon as possible. Often, ongoing care is performed in an intensive care unit. If fluid replacement is not enough to maintain blood pressure, medications that raise blood pressure may be used. Mechanical ventilation and dialysis may be needed to support the function of the lungs and kidneys, respectively. To guide treatment, a central venous catheter and an arterial catheter may be placed for access to the bloodstream. Other measurements such as cardiac output and superior vena cava oxygen saturation may be used. People with sepsis need preventive measures for deep vein thrombosis, stress ulcers and pressure ulcers, unless other conditions prevent such interventions. Some might benefit from tight control of blood sugar levels with insulin. The use of corticosteroids is controversial. Activated drotrecogin alfa, originally marketed for severe sepsis, has not been found to be helpful, and was withdrawn from sale in 2011.
Disease severity partly determines the outcome. The risk of death from sepsis is as high as 30%, from severe sepsis as high as 50%, and from septic shock as high as 80%. The number of cases worldwide is unknown as there is little data from the developing world. Estimates suggest sepsis affects millions of people a year. In the developed world approximately 0.2 to 3 people per 1000 are affected by sepsis yearly, resulting in about a million cases per year in the United States. Rates of disease have been increasing. Sepsis is more common among males than females. The medical condition has been described since the time of Hippocrates. Septicemia and blood poisoning are terms that referred to the microorganisms or their toxins in the blood and are no longer commonly used.
In addition to symptoms related to the provoking cause, sepsis is frequently associated with either fever, low body temperature, rapid breathing, elevated heart rate, confusion, and edema. Early signs are a rapid heart rate, decreased urination, and high blood sugar. Signs of established sepsis include confusion, metabolic acidosis (which may be accompanied by faster breathing and lead to a respiratory alkalosis), low blood pressure due to decreased systemic vascular resistance, higher cardiac output, and dysfunctions of blood coagulation (where clotting may lead to organ failure).
The drop in blood pressure seen in sepsis may lead to shock. This may result in light-headedness. Bruising or intense bleeding may occur.
Distributive shock includes infectious, anaphylactic, endocrine (e.g., adrenal insufficiency), salicylate toxicity, and neurogenic causes. The SIRS features typically occur in early septic shock.
The presentation of shock is variable with some people having only minimal symptoms such as confusion and weakness. While the general signs for all types of shock are low blood pressure, decreased urine output, and confusion, these may not always be present. While a fast heart rate is common, those on β-blockers, those who are athletic and in 30% of cases of those with shock due to intra abdominal bleeding may have a normal or slow heart rate. Specific subtypes of shock may have additional symptoms.
Distributive shock is a medical condition in which abnormal distribution of blood flow in the smallest blood vessels results in inadequate supply of blood to the body's tissues and organs. It is one of four categories of shock, a condition where there is not enough oxygen-carrying blood to meet the metabolic needs of the cells which make up the body's tissues and organs. Distributive shock is different from the other three categories of shock in that it occurs even though the output of the heart is at or above a normal level. The most common cause is sepsis leading to type of distributive shock called septic shock, a condition that can be fatal.
In addition to sepsis, distributive shock can be caused by systemic inflammatory response syndrome (SIRS) due to conditions other than infection such as pancreatitis, burns or trauma. Other causes include, toxic shock syndrome (TSS), anaphylaxis (a sudden, severe allergic reaction), adrenal insufficiency, reactions to drugs or toxins, heavy metal poisoning, hepatic (liver) insufficiency and damage to the central nervous system. Causes of adrenal insufficiency leading to distributive shock include acute worsening of chronic adrenal insufficiency, destruction or removal of the adrenal glands, suppression of adrenal gland function due to exogenous steroids, hypopituitarism and metabolic failure of hormone production.
After ingestion, toxic features usually develop within a few minutes. The major lethal consequence of aluminium phosphide ingestion is profound circulatory collapse, and is reportedly secondary to these toxins generated, which lead due to direct effects on cardiomyocytes, fluid loss, and adrenal gland damage. The signs and symptoms are non-specific, dose dependent and evolve with time passing. The dominant clinical feature is severe hypotension refractory to dopamine therapy. Other features may include dizziness, fatigue, tightness in the chest, headache, nausea, vomiting, diarrhoea, ataxia, numbness, paraesthesia, tremor, muscle weakness, diplopia and jaundice. If severe inhalation occurs, the patient may develop acute respiratory distress syndrome (ARDS), heart failure, arrhythmias, convulsion and coma. Late manifestation include liver and kidney toxicities.
The diagnosis of AAlP usually depends on the clinical suspicion or history (self-report or by attendants). In some nations, tablets of AlP are also referred to as "rice tablets" and, if there is a history of rice tablet ingestion, then it should be treated differently from other types of rice tablets that are made up of herbal products. For a silver nitrate test on gastric aspirate, diluted gastric content can be positive.
The signs and symptoms are generally flu-like. They include fever, chills, nausea, headache, fatigue, muscle aches, joint pains, lack of appetite, shortness of breath, pneumonia, chest pain, change in blood pressure, and coughing. A sweet or metallic taste in the mouth may also be reported, along with a dry or irritated throat which may lead to hoarseness. Symptoms of a more severe metal toxicity may also include a burning sensation in the body, shock, no urine output, collapse, convulsions, shortness of breath, yellow eyes or yellow skin, rash, vomiting, watery or bloody diarrhea or low or high blood pressure, which require prompt medical attention. Flu-like symptoms normally disappear within 24 to 48 hours. Full recovery often requires one to three weeks.
The symptoms of a sympathomimetic toxidrome include anxiety, delusions, diaphoresis, hyperreflexia, mydriasis, paranoia, piloerection, and seizures. Complications include hypertension, and tachycardia. Substances that may cause this toxidrome include salbutamol, amphetamines, cocaine, ephedrine (Ma Huang), methamphetamine, phenylpropanolamine (PPA's), and pseudoephedrine. It may appear very similar to the anticholinergic toxidrome, but is distinguished by hyperactive bowel sounds and sweating.
Acute aluminium phosphide poisoning (AAlPP) is a large, though under-reported, problem throughout the world, particularly in the Indian subcontinent. Aluminium phosphide (AlP), which is readily available as a fumigant for stored cereal grains, sold under various brand names such as "QuickPhos" and "Celphos", is highly toxic, especially when consumed from a freshly opened container. Death results from profound shock, myocarditis and multi-organ failure. Aluminium phosphide has a fatal dose of between . It has been reported to be the most common cause of suicidal death in North India. Deaths have also been reported in Iran. In January 2017, four children died at a trailer park in Amarillo, Texas, after the pesticide was used under the home to kill rats. Several incidents of death in travelers in Thailand and other parts of Southeast Asia may have been caused by aluminum phosphide or chlorpyrifos, an organophosphate insecticide, used in an attempt to kill bedbugs in hotels. Wired magazine reported on the problem in March 2014. A short film in Arabic on Youtube that focused on the problem in Saudi Arabia had over 3.5 million hits in 2014. The CDC has classified phosphine as immediately dangerous to life at 50 parts per million.
These include
- red skin rash usually of the face, elbows, and knees
- skin desquamation
- exanthema
- red tongue
- toxic shock syndrome
Other features include mesenteric lymphadenitis and arthritis. Kidney failure rarely occurs.
Relapses occur in up to 50% of patients.
A toxic tort claim is a specific type of personal injury lawsuit in which the plaintiff claims that exposure to a chemical or dangerous substance caused the plaintiff's injury or disease.
Symptoms arise 4–12 hours after exposure to an organic dust, and generally last from one to five days. Common generalised symptoms include fever over 38 °C, chills, myalgia and malaise. The most frequent respiratory symptoms are dyspnea and a dry cough, while a wheeze may be present less commonly. Headache, rhinitis, conjunctivitis and keratitis can also be present, and skin irritation may occur in those handling grain.
Respiratory function may worsen to the point where hypoxia occurs, and damage to the airways may lead to non-cardiogenic pulmonary edema one to three days post exposure.
Laboratory investigations may show a raised white cell (and specifically neutrophil) count, while a chest X-ray is often normal or shows minimal interstitial infiltration.
Metal fume fever, also known as brass founders' ague, brass shakes, zinc shakes, galvie flu, metal dust fever, Welding Shivers, or Monday morning fever, is an illness primarily caused by exposure to chemicals such as zinc oxide (ZnO), aluminum oxide (AlO), or magnesium oxide (MgO) which are produced as byproducts in the fumes that result when certain metals are heated. Other common sources are fuming silver, gold, platinum, chromium (from stainless steel), nickel, arsenic, manganese, beryllium, cadmium, cobalt, lead, selenium, and zinc.
Welders are commonly exposed to the substances that cause metal fume fever from the base metal, plating, or filler. Brazing and soldering can also cause metal poisoning due to exposure to lead, zinc, copper, or cadmium. In extreme cases, cadmium (present in some older silver solder alloys) can cause loss of consciousness.
Toxic abortion is a medical phenomenon of spontaneous abortion, miscarriage, or stillbirth caused by toxins in the environment of the mother during pregnancy, especially as caused by toxic environmental pollutants, though sometimes reported as caused by naturally occurring plant toxins.
Electrical injury is a physiological reaction caused by electric current passing through the (human) body. Electric shock occurs upon contact of a (human) body part with any source of electricity that causes a sufficient magnitude of current to pass through the victim's flesh, viscera or hair. Physical contact with energized wiring or devices is the most common cause of an electric shock. In cases of exposure to high voltages, such as on a power transmission tower, physical contact with energized wiring or objects may not be necessary to cause electric shock, as the voltage may be sufficient to "jump" the air gap between the electrical device and the victim.
The injury related to electric shock depends on the magnitude of the current. Very small currents may be imperceptible or produce a light tingling sensation. A shock caused by low current that would normally be harmless could startle an individual and cause injury due to suddenly jerking away from the source of electricity, resulting in one striking a stationary object, dropping an object being held or falling. Stronger currents may cause some degree of discomfort or pain, while more intense currents may induce involuntary muscle contractions, preventing the victim from breaking free of the source of electricity. Still larger currents usually result in tissue damage and may trigger fibrillation of the heart or cardiac arrest, any of which may ultimately be fatal. If death results from an electric shock the cause of death is generally referred to as electrocution.
Toxic oil syndrome or simply toxic syndrome (Spanish: "síndrome del aceite tóxico" or "síndrome tóxico") is a musculoskeletal disease most famous for a 1981 outbreak in Spain which killed over 600 people and was likely caused by contaminated colza oil. Its first appearance was as a lung disease, with unusual features; though the symptoms initially resembled a lung infection, antibiotics were ineffective. The disease appeared to be restricted to certain geographical localities, and several members of a family could be affected, even while their neighbours had no symptoms. Following the acute phase, a range of other chronic symptoms was apparent.
Alimentary Toxic Aleukia was first characterized in the early 19th century after affecting a large population in the Orenburg district of the former U.S.S.R. during World War II. The sick people had eaten overwintered grain colonized with Fusarium sporotrichioides and Fusarium poae
People may be exposed to toxic chemicals or similar dangerous substances from pharmaceutical products, consumer products, the environment, or in the home or at work. Many toxic tort cases arise either from the use of medications, or through exposure at work.
The symptoms of a cholinergic toxidrome include bronchorrhea, confusion, defecation, diaphoresis, diarrhea, emesis, lacrimation, miosis, muscle fasciculations, salivation, seizures, urination, and weakness. Complications include bradycardia, hypothermia, and tachypnea. Substances that may cause this toxidrome include carbamates, mushrooms, and organophosphates.
Common mnemonics for organophosphate poisoning include the "killer B's" of bradycardia, bronchorrhea and bronchospasm because they are the leading cause of death, and SLUDGE - Salivation, Lacrimation, Urination, Diarrhea, Gastrointestinal distress, and Emesis.
An alternative mnemonic is DUMBBELLSS - Diarrhea, Urination, Miosis, Bradycardia, Bronchospasm, Emesis, Lacrimation, Lethargy, Salivation and Seizures.
Neurogenic shock is a distributive type of shock resulting in low blood pressure, occasionally with a slowed heart rate, that is attributed to the disruption of the autonomic pathways within the spinal cord. It can occur after damage to the central nervous system such as spinal cord injury. Low blood pressure occurs due to decreased systemic vascular resistance resulting in pooling of blood within the extremities lacking sympathetic tone. The slowed heart rate results from unopposed vagal activity and has been found to be exacerbated by hypoxia and endobronchial suction.
Neurogenic shock can be a potentially devastating complication, leading to organ dysfunction and death if not promptly recognized and treated. It is not to be confused with spinal shock, which is not circulatory in nature.