Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The signs and symptoms associated with myocarditis are varied, and relate either to the actual inflammation of the myocardium or to the weakness of the heart muscle that is secondary to the inflammation. Signs and symptoms of myocarditis include the following:
- Chest pain (often described as "stabbing" in character)
- Congestive heart failure (leading to swelling, shortness of breath and liver congestion)
- Palpitations (due to abnormal heart rhythms)
- Sudden death (in young adults, myocarditis causes up to 20% of all cases of sudden death)
- Fever (especially when infectious, e.g. in rheumatic fever)
- Symptoms in young children tend to be more nonspecific, with generalized malaise, poor appetite, abdominal pain, and chronic cough. Later stages of the illness will present with respiratory symptoms with increased work of breathing, and is often mistaken for asthma.
Since myocarditis is often due to a viral illness, many patients give a history of symptoms consistent with a recent viral infection, including fever, rash, diarrhea, joint pains, and easily becoming tired.
Myocarditis is often associated with pericarditis, and many people with myocarditis present with signs and symptoms that suggest myocarditis and pericarditis at the same time.
Myocarditis, also known as inflammatory cardiomyopathy, is inflammation of the heart muscle. Symptoms can include shortness of breath, chest pain, decreased ability to exercise, and an irregular heartbeat. The duration of problems can vary from hours to months. Complications may include heart failure due to dilated cardiomyopathy or cardiac arrest.
Myocarditis is most often due to a viral infection. Other causes include bacterial infections, certain medications, toxins, and autoimmune disorders. A diagnosis may be supported by an electrocardiogram (ECG), increased troponin, heart MRI, and occasionally a heart biopsy. An ultrasound of the heart is important to rule out other potential causes such as heart valve problems.
Treatment depends on both the severity and the cause. Medications such as ACE inhibitors, beta blockers, and diuretics are often used. A period of no exercise is typically recommended during recovery. Corticosteroids or intravenous immunoglobulin (IVIG) may be useful in certain cases. In severe cases an implantable cardiac defibrillator or heart transplant may be recommended.
In 2013, about 1.5 million cases of acute myocarditis occurred. While people of all ages are affected, the young are most often affected. It is slightly more common in males than females. Most cases are mild. In 2015 cardiomyopathy, including myocarditis, resulted in 354,000 deaths up from 294,000 in 1990. The initial descriptions of the condition are from the mid-1800s.
Carditis is the inflammation of the heart or its surroundings. The plural of carditis is carditides.
It is usually studied and treated by specifying it as:
- Pericarditis is the inflammation of the pericardium
- Myocarditis is the inflammation of the heart muscle
- Endocarditis is the inflammation of the endocardium
- Pancarditis is the inflammation of the entire heart: the epicardium, the myocardium and the endocardium
- Reflux carditis refers to a possible outcome of esophageal reflux (also known as GERD), and involves inflammation of the esophagus/stomach mucosa
Myopericarditis is a combination of both myocarditis and pericarditis appearing in a single individual, namely inflammation of both the pericardium and the heart muscle. It can involve the presence of fluid in the heart. Myopericarditis refers primarily to a pericarditis with lesser myocarditis, as opposed to a perimyocarditis, though the two terms are often used interchangeably. Both will be reflected on an ECG. Myo-pericarditis usually involves inflammation of the pericardium, or the sac covering the heart.
The ACAM2000 smallpox vaccine has been known to cause myopericarditis in some people.
Symptoms in eosinophilc myocarditis are highly variable. They tend to reflect the many underlying disorders causing eosinophil dysfunction as well as the widely differing progression rates of cardiac damage. Before cardiac symptoms are detected, some 66% of cases have symptoms of a common cold and 33% have symptoms of asthma, rhinitis, urticarial, or other allergic disorder. Cardiac manifestations of eosinophilic myocarditis range from none to life-threatening conditions such as cardiogenic shock or sudden death due to abnormal heart rhythms. More commonly the presenting cardiac symptoms of the disorder are the same as those seen in other forms of heart disease: chest pain, shortness of breath, fatigue, chest palpitations, light headedness, and syncope. In its most extreme form, however, eosinophilic myocarditis can present as acute necrotizing eosinophilic myocarditis, i.e. with symptoms of chaotic and potentially lethal heart failure and heart arrhythmias. This rarest form of the disorder reflects a rapidly progressive and extensive eosinophilic infiltration of the heart that is accompanied by massive myocardial cell necrosis.
Hypereosinophilia (i.e. blood eosinophil counts at or above 1,500 per microliter) or, less commonly, eosinophilia (counts above 500 but below 1,500 per microliter) are found in the vast majority of cases of eosinophilic myocarditis and are valuable clues that point to this rather than other types of myocarditis or myocardial injuries. However, elevated blood eosinophil counts may not occur during the early phase of the disorder. Other, less specific laboratory findings implicate a cardiac disorder but not necessarily eosinophilic myocarditis. These include elevations in blood markers for systemic inflammation (e.g. C reactive protein, erythrocyte sedimentation rate), elevations in blood markers for cardiac injury (e.g. creatine kinase, troponins); and abnormal electrocardiograms ( mostly ST segment-T wave abnormalities).
These depend on the amount of inflammation. These are covered in their relevant articles.
- Acute: Heart failure; pericardial effusion; etc.
- Chronic: Valve diseases as noted above; Reduced cardiac output; Exercise intolerance.
Eosinophilic coronary periarteritis is a heart disorder caused by extensive eosinophilic infiltration of the adventitia and periadventitia, i.e. the soft tissues, surrounding the coronary arteries. The intima, tunica media, and tunica intima layers of these arteries remain intact and are generally unaffected. Thus, this disorder is characterized by episodes of angina, particularly Prinzmetal's angina, and sudden death due to heart dysfunction. The disorder is considered distinct from eosinophilic myocarditis.
Autoimmune heart diseases are the effects of the body's own immune defense system mistaking cardiac antigens as foreign and attacking them leading to inflammation of the heart as a whole, or in parts. The commonest form of autoimmune heart disease is rheumatic heart disease or rheumatic fever.
Idiopathic giant-cell myocarditis (IGCM) is a cardiovascular disease of the muscle of the heart (myocardium).
The condition is rare; however, it is often fatal and there is no proven cure because of the unknown nature of the disorder.
IGCM frequently leads to death with a high rate of about 70% in first year. A patient with IGCM typically presents with symptoms of heart failure, although some may present initially with ventricular arrhythmia or heart block. Median age from the time the disease is diagnosed to the time of death is approximately 6 months. 90% of patients are either deceased by the end of 1 year or have received a heart transplant. Diagnosis is made by endomyocardial biopsy during heart catheterization. Biopsy shows multinucleated giant cells and thus the name. While previously cases universally required heart transplantation, recent studies show that two thirds of patients can survive past one year with high doses of immunosuppressants such as prednisone and cyclosporine. The transplanted heart has a high chance of disease recurrence. Compared to lymphocytic (presumed viral) myocarditis, giant cell myocarditis is much more severe with much more rapid progression.
It is suggested to be caused by T-lymphocytes.
Dilated cardiomyopathy develops insidiously, and may not initially cause symptoms significant enough to impact on quality of life. Nevertheless, many people experience significant symptoms. These might include:
- Shortness of breath
- Syncope (fainting)
- Angina, but only in the presence of ischemic heart disease
A person suffering from dilated cardiomyopathy may have an enlarged heart, with pulmonary edema and an elevated jugular venous pressure and a low pulse pressure. Signs of mitral and tricuspid regurgitation may be present.
Kawasaki disease often begins with a high and persistent fever that is not very responsive to normal treatment with paracetamol (acetaminophen) or ibuprofen. It is the most prominent symptom in Kawasaki disease, is a characteristic sign of the acute phase of the disease, is normally high (above 39–40 °C), is remittent, and is followed by extreme irritability. Recently, it is reported to be present in patients with atypical or incomplete Kawasaki disease; nevertheless, it is not present in 100% of cases. The first day of fever is considered the first day of illness, and the duration of fever is on average one to two weeks; in the absence of treatment, it may extend for three to four weeks. Prolonged fever is associated with higher incidence of cardiac involvement. It responds partially to antipyretic drugs and does not cease with the introduction of antibiotics. However, when appropriate therapy is started – intravenous immunoglobulin and aspirin – the fever is gone after two days.
Bilateral conjunctival inflammation was reported to be the most common symptom after fever. It typically involves the bulbar conjunctivae, is not accompanied by suppuration, and is not painful. It usually begins shortly after the onset of fever during the acute stage of the disease. Anterior uveitis may be present on slit-lamp examination. Iritis can occur, too. Keratic precipitates are another eye manifestation (detectable by a slit lamp but are usually too small to be seen by the unaided eye).
Kawasaki disease presents with set of mouth symptoms, the most characteristic changes are the red tongue, swollen lips with vertical cracking and bleeding. The mucosa of the mouth and throat may be bright red, and the tongue may have a typical "strawberry tongue" appearance (marked redness with prominent gustative papillae). These mouth symptoms are caused by the typical necrotizing microvasculitis with fibrinoid necrosis.
Cervical lymphadenopathy is seen in 50% to 75% of people, whereas the other features are estimated to occur in 90% of patients, but sometimes it can be the dominant presenting symptom. According to the definition of the diagnostic criteria, at least one impaired lymph node ≥ 15 mm in diameter should be involved. Affected lymph nodes are painless or minimally painful, nonfluctuant, and nonsuppurative; erythema of the neighboring skin may occur. Children with fever and neck adenitis who do not respond to antibiotics should have Kawasaki disease considered as part of the differential diagnoses.
In the acute phase of the disease, changes in the peripheral extremities can include erythema of the palms and soles, which is often striking with sharp demarcation and often accompanied by painful, brawny edema of the dorsa of the hands or feet. This is why affected children frequently refuse to hold objects in their hands or to bear weight on their feet. Later, during the convalescent or the subacute phase, desquamation of the fingers and toes usually begins in the periungual region within two to three weeks after the onset of fever and may extend to include the palms and soles. Around 11% of children affected by the disease may continue skin-peeling for many years. One to two months after the onset of fever, deep transverse grooves across the nails may develop (Beau’s lines), and occasionally nails are shed.
The most common skin manifestation is a diffuse macular-papular erythematous rash, which is quite nonspecific. The rash varies over time and is characteristically located on the trunk; it may further spread to involve the face, extremities, and perineum. Many other forms of cutaneous lesions have been reported; they may include scarlatiniform, papular, urticariform, multiform-like erythema, and purpuric lesions; even micropustules were reported. It can be polymorphic, not itchy, and normally observed up to the fifth day of fever. However, it is never bullous or vesicular.
In the acute stage of Kawasaki disease, systemic inflammatory changes are evident in many organs. Joint pain (arthralgia) and swelling, frequently symmetrical, and arthritis can also occur. Myocarditis, diarrhea, pericarditis, valvulitis, aseptic meningitis, pneumonitis, lymphadenitis, and hepatitis may be present and are manifested by the presence of inflammatory cells in the affected tissues. If left untreated, some symptoms will eventually relent, but coronary artery aneurysms will not improve, resulting in a significant risk of death or disability due to myocardial infarction. If treated quickly, this risk can be mostly avoided and the course of illness cut short.
Other reported nonspecific symptoms include cough, rhinorrhea, sputum, vomiting, headache, and seizure.
The course of the disease can be divided into three clinical phases.
- The acute febrile phase, which usually lasts for one to two weeks, is characterized by fever, conjunctival injection, erythema of the oral mucosa, erythema and swelling of the hands and feet, rash, cervical adenopathy, aseptic meningitis, diarrhea, and hepatic dysfunction. Myocarditis is common during this time, and a pericardial effusion may be present. Coronary arteritis may be present, but aneurysms are generally not yet visible by echocardiography.
- The subacute phase begins when fever, rash, and lymphadenopathy resolve at about one to two weeks after the onset of fever, but irritability, anorexia, and conjunctival injection persist. Desquamation of the fingers and toes and thrombocytosis are seen during this stage, which generally lasts until about four weeks after the onset of fever. Coronary artery aneurysms usually develop during this time, and the risk for sudden death is highest.
- The convalescent stage begins when all clinical signs of illness have disappeared, and continues until the sedimentation rate returns to normal, usually at six to eight weeks after the onset of illness.
The presentation between adults and children differs, as adults' neck lymph nodes are more affected (93% of adults versus 15% of children), hepatitis (65% versus 10%), and arthralgia (61% versus 24–38%). Some people have atypical presentations and may not have the classical symptoms. This occurs in particular in young infants; those people are especially at higher risk for cardiac artery aneurysms.
Symptoms of cardiomyopathies may include fatigue, swelling of the lower extremities and shortness of breath. Further indications of the condtion may include:
- Arrhythmia
- Fainting
- Diziness
The heart complications are the most important aspect of Kawasaki disease. It is the main cause of heart disease acquired in childhood in the United States and Japan. In developed nations, it appears to have replaced acute rheumatic fever as the most common cause of acquired heart disease in children. Coronary artery aneurysms occur as a sequela of the vasculitis in 20–25% of untreated children. It is first detected at a mean of 10 days of illness and the peak frequency of coronary artery dilation or aneurysms occurs within four weeks of onset. Aneurysms are classified into small (internal diameter of vessel wall 8 mm). Saccular and fusiform aneurysms usually develop between 18 and 25 days after the onset of illness.
Even when treated with high-dose IVIG regimens within the first 10 days of illness, 5% of children with Kawasaki disease develop at the least transient coronary artery dilation and 1% develop giant aneurysms. Death can occur due either to myocardial infarction secondary to blood clot formation in a coronary artery aneurysm or to of a large coronary artery aneurysm. Death is most common two to 12 weeks after the onset of illness.
Many risk factors predicting coronary artery aneurysms have been identified, including persistent fever after IVIG therapy, low hemoglobin concentrations, low albumin concentrations, high white-blood-cell count, high band count, high CRP concentrations, male sex, and age less than one year.
Coronary artery lesions resulting from Kawasaki disease change dynamically with time. Resolution one to two years after the onset of the disease has been observed in half of vessels with coronary aneurysms. Narrowing of the coronary artery, which occurs as a result of the healing process of the vessel wall, often leads to significant obstruction of the blood vessel and lead to the heart not receiving enough blood and oxygen. This can eventually lead to heart muscle tissue death (myocardial infarction).
MI caused by thrombotic occlusion in an aneurysmal, stenotic, or both aneurysmal and stenotic coronary artery is the main cause of death from Kawasaki disease. The highest risk of MI occurs in the first year after the onset of the disease. MI in children presents with different symptoms from those in adults. The main symptoms were shock, unrest, vomiting, and abdominal pain; chest pain was most common in older children. Most of these children had the attack occurring during sleep or at rest, and around one-third of attacks were asymptomatic.
Valvular insufficiencies, particularly of mitral or tricuspid valves, are often observed in the acute phase of Kawasaki disease due to inflammation of the heart valve or inflammation of the heart muscle-induced myocardial dysfunction, regardless of coronary involvement. These lesions mostly disappear with the resolution of acute illness, but a very small group of the lesions persist and progress. There is also late-onset aortic or mitral insufficiency caused by thickening or deformation of fibrosed valves, with the timing ranging from several months to years after the onset of Kawasaki disease. Some of these lesions require valve replacement.
Dilated cardiomyopathy can be due to pericardial effusion or infective endocarditis, especially in intravenous drug users which are common in the HIV population. However, the most researched cause of cardiomyopathy is myocarditis (myocardial inflammation and infection) caused by HIV-1, which the main subtype of HIV (the other being HIV-2), with greater likelihood of transmission and shorter period between infection and illness. HIV-1 virions infect cardiomyocytes in patches but there is no direct correlation between viral infection and dysfunction of cardiomyocytes.
HIV-related cardiomyopathy is often not associated with any specific opportunistic infection, and approximately 40% of patients have not experienced any opportunistic infection before the onset of cardiac symptoms.
Zidovudine is an example of a nucleoside analogue and has been shown to cause: myocarditis and dilated cardiomyopathy as well as an increase in total cholesterol, triglycerides, LDL, HDL and insulin resistance. Protease inhibitors are another group of drugs (e.g. ritonavir) and some of them can cause a range of problems such as: lipodystrophy, atherosclerosis, increase total cholesterol, triglyceride, HDL, LDL, and insulin resistance. Amphotericin B can cause dilated cardiomyopathy, hypertension and bradycardia whereas, Ganciclovir can cause ventricular tachycardia. Interferon-alpha can cause arrhythmia and myocardial infarction/ischemia.
Symptoms of toxic shock syndrome vary depending on the underlying cause. TSS resulting from infection with the bacterium "Staphylococcus aureus" typically manifests in otherwise healthy individuals via signs and symptoms including high fever, accompanied by low blood pressure, malaise and confusion, which can rapidly progress to stupor, coma, and multiple organ failure. The characteristic rash, often seen early in the course of illness, resembles a sunburn, and can involve any region of the body including the lips, mouth, eyes, palms and soles. In patients who survive the initial phase of the infection, the rash desquamates, or peels off, after 10–14 days.
In contrast, TSS caused by the bacterium "Streptococcus pyogenes", or TSLS, typically presents in people with pre-existing skin infections with the bacteria. These individuals often experience severe pain at the site of the skin infection, followed by rapid progression of symptoms as described above for TSS. In contrast to TSS caused by "Staphylococcus", streptococcal TSS less often involves a sunburn-like rash.
Coxsackieviruses-induced cardiomyopathy are positive-stranded RNA viruses in picornavirus family and the genus enterovirus, acute enterovirus infections such as Coxsackievirus B3 have been identified as the cause of virally induced acute myocarditis, resulting in dilated cardiomyopathy. Dilated cardiomyopathy in humans can be caused by multiple factors including hereditary defects in the cytoskeletal protein dystrophin in Duchenne muscular dystrophy (DMD) patients). A heart that undergoes dilated cardiomyopathy shows unique enlargement of ventricles, and thinning of the ventricular wall that may lead to heart failure. In addition to the genetic defects in dystrophin or other cytoskeletal proteins, a subset of dilated cardiomyopathy is linked to enteroviral infection in the heart, especially coxsackievirus B. Enterovirus infections are responsible for about 30% of the cases of acquired dilated cardiomyopathy in humans.
Cardiomyopathies can be classified using different criteria:
- Primary/intrinsic cardiomyopathies
- Genetic
- Hypertrophic cardiomyopathy
- Arrhythmogenic right ventricular cardiomyopathy (ARVC)
- LV non-compaction
- Ion Channelopathies
- Dilated cardiomyopathy (DCM)
- Restrictive cardiomyopathy (RCM)
- Acquired
- Stress cardiomyopathy
- Myocarditis
- Ischemic cardiomyopathy
- Secondary/extrinsic cardiomyopathies
- Metabolic/storage
- Fabry's disease
- hemochromatosis
- Endomyocardial
- Endomyocardial fibrosis
- Hypereosinophilic syndrome
- Endocrine
- diabetes mellitus
- hyperthyroidism
- acromegaly
- Cardiofacial
- Noonan syndrome
- Neuromuscular
- muscular dystrophy
- Friedreich's ataxia
- Other
- Obesity-associated cardiomyopathy
Toxic shock syndrome (TSS) is a condition caused by bacterial toxins. Symptoms may include fever, rash, skin peeling, and low blood pressure. There may also be symptoms related to the specific underlying infection such as mastitis, osteomyelitis, necrotising fasciitis, or pneumonia.
TSS is caused by bacteria of either the "Streptococcus pyogenes" or "Staphylococcus aureus" type. Streptococcal toxic shock syndrome (STSS) is sometimes referred to as toxic shock-like syndrome (TSLS). The underlying mechanism involves the production of superantigens during an invasive streptococcus infection or a localized staphylococcus infection. Risk factors for the staphylococcal type include the use of very absorbent tampons and skin lesions in young children. Diagnosis is typically based on symptoms.
Treatment includes antibiotics, incision and drainage of any abscesses, and possibly intravenous immunoglobulin. The need for rapid removal of infected tissue via surgery in those with a streptococcal cause while commonly recommended is poorly supported by the evidence. Some recommend delaying surgical debridement. The overall risk of death in streptococcal disease is about 50% while in staphylococcal disease it is around 5%. Death may occur within 2 days.
In the United States streptococcal TSS occurs in about 3 per 100,000 per year while staphylococcal TSS occurs in about 0.5 per 100,000 per year. The condition is more common in the developing world. It was first described in 1927. Due to the association with very absorbent tampons, these products were removed from sale.
Dilated cardiomyopathy (DCM) is a condition in which the heart becomes enlarged and cannot pump blood effectively. Symptoms vary from none to feeling tired, leg swelling, and shortness of breath. It may also result in chest pain or fainting. Complications can include heart failure, heart valve disease, or an irregular heartbeat.
Causes include genetics, alcohol, cocaine, certain toxins, complications of pregnancy, and certain infections. Coronary artery disease and high blood pressure may play a role, but are not the primary cause. In many cases the cause remains unclear. It is a type of cardiomyopathy, a group of diseases that primarily affects the heart muscle. The diagnosis may be supported by an electrocardiogram, chest X-ray, or echocardiogram.
In those with heart failure treatment may include medications in the ACE inhibitor, beta blocker, and diuretic families. A low salt diet may also be helpful. In those with certain types of irregular heartbeat, blood thinners or an implantable cardioverter defibrillator may be recommended. If other measures are not effective a heart transplant may be an option in some.
About 1 per 2,500 people are affected. It occurs more frequently in men than women. Onset is most often in middle age. Five-year survival rate is about 50%. It can also occur in children and is the most common type of cardiomyopathy in this age group.
Viral cardiomyopathy occurs when viral infections cause myocarditis with a resulting thickening of the myocardium and dilation of the ventricles. These viruses include Coxsackie B and adenovirus, echoviruses, influenza H1N1, Epstein-Barr virus, rubella (German measles virus), varicella (chickenpox virus), mumps, measles, parvoviruses, yellow fever, dengue fever, polio, rabies and the viruses that cause hepatitis A and C.
Coxsackievirus shows a cardiac tropism partly due to the high expression of coxsackievirus and adenoviris receptors (CAR) in cardiomyocytes. Coxsackievirus B genome is approximately 7.4 Kb and translated as a polycistronic polyprotein. Upon translation, the polyprotein is cleaved by two essential viral proteases, 2A and 3C. The viral protease 2A cleaves the proteins in a sequence specific manner. These viral proteases can also act on host proteins exerting negative effects on the residing cell. Enteroviral protease 2A can cleave the cytoskeletal dystrophin protein in cardiomyocytes disrupting the dystrophin glycoprotein (DCG) complex. The cleavage site of dystrophin by protease 2A occurs in the hinge 3 region of the protein resulting a disruption of DCG complex and loss of sarcolemma integrity and increasing myocyte permeability. This eventually results in similar cardiac deformities observed in dilated cardiomyopathy caused by hereditary defects in dystrophin in DMD patients. Additionally, dystrophin deficiency has been shown to increase the severity in dilated cardiomyopathy in a mouse model for DMD. The increased susceptibility of dystrophin deficient heart to coxsackievirus-induced dilated cardiomyopathy is attributed to more efficient release of the virus from infected cells resulting an increased in viral-mediated cytopathic effects.
Viral induced dilated cardiomyopathy can be characterized using different methods. A recent study showed in coxsackievirus infected heart proteome, increased levels of fibrotic extracellular matrix proteins and reduced amounts of energy-producing enzymes can be observed suggesting they could be characteristic in enteroviral cardiomyopathy.
There are notable differences between the hereditary dilated cardiomyopathy in DMD and acute coxsackieviral-mediated cardiomyopathy.
1. The amount of virally infected cardiomyocytes varies in different stages of the disease. In a mouse model, at the acute stage (7 days after infection with coxsackievirus B3) approximately 10% of the myocytes are infected and could affect overall cardiac function. In chronic murine infection, the percentage of infected cardiomyocytes are much lower.
2. Unlike in the DMD, in coxsackievirus induced cardiomyopathy, acute cleavage of dystrophin in cardiomyocytes is unlikely to induce any prompt compensatory mechanism since host cell translation mechanism is defective in the infected cells.
First-degree atrioventricular block (AV block), or PR prolongation, is a disease of the electrical conduction system of the heart in which the PR interval is lengthened beyond 0.20 seconds.
In first-degree AV block, the impulse conducting from atria to ventricles through the atrioventricular node (AV node) is delayed and travels slower than normal. It has a prevalence in the normal (young adult) population of 0.65-1.1% and the incidence is 0.13 per 1000 persons.
Endocardial fibroelastosis (EFE) is a rare heart disorder usually occurring in children two years old and younger. It may also be considered a reaction to stress, not necessarily a specific disease.
It should not be confused with endomyocardial fibrosis.
Although there are many signs and symptoms associated with PVCs, PVCs may have no symptoms at all. An isolated PVC is hard to catch without the use of a Holter monitor. PVCs may be perceived as a skipped heart beat, a strong beat, or a feeling of suction in the chest. They may also cause chest pain, a faint feeling, fatigue, or hyperventilation after exercise. Several PVCs in a row becomes a form of ventricular tachycardia (VT), which is a potentially fatal abnormal heart rhythm. Overall it has been seen that the symptom felt most by patients experiencing a PVC is the mere perception of a skipped heartbeat. The more frequently these contractions occur, the more likely there are to be symptoms, despite the fact that these beats have little effect of the pumping action of the heart and therefore cause minimal if any symptoms.
Some other possible signs and symptoms of PVCs:
- Abnormal ECG
- Irregular heart beat
- Dyspnea
- Dizziness
- Feeling your heart beat (palpitations)
- Feeling of occasional, forceful beats
- Increased awareness of your heart beat
- Perception of a skipped heartbeat