Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
An emerging infectious disease (EID) is an infectious disease whose incidence has increased in the past 20 years and could increase in the near future. Emerging infections account for at least 12% of all human pathogens. EIDs are caused by newly identified species or strains (e.g. Severe acute respiratory syndrome, HIV/AIDS) that may have evolved from a known infection (e.g. influenza) or spread to a new population (e.g. West Nile fever) or to an area undergoing ecologic transformation (e.g. Lyme disease), or be "reemerging" infections, like drug resistant tuberculosis. Nosocomial (hospital-acquired) infections, such as methicillin-resistant Staphylococcus aureus are emerging in hospitals, and extremely problematic in that they are resistant to many antibiotics. Of growing concern are adverse synergistic interactions between emerging diseases and other infectious and non-infectious conditions leading to the development of novel syndemics. Many emerging diseases are zoonotic - an animal reservoir incubates the organism, with only occasional transmission into human populations.
Mayaro virus disease is a mosquitoborne zoonotic pathogen endemic to certain humid forests of tropical South America. Infection with Mayaro virus causes an acute, self-limited dengue-like illness of 3–5 days' duration. The causative virus, abbreviated MAYV, is in the family Togaviridae, and genus Alphavirus. It is closely related to other alphaviruses that produce a dengue-like illness accompanied by long-lasting arthralgia. It is only known to circulate in tropical South America.
The incubation period of the chikungunya virus ranges from one to twelve days, and is most typically three to seven. The disease may be asymptomatic, but generally is not, as 72% to 97% of those infected will develop symptoms. Characteristic symptoms include sudden onset with high fever, joint pain, and rash. Other symptoms may occur, including headache, fatigue, digestive complaints, and conjunctivitis.
Information gained during recent epidemics suggests that chikungunya fever may result in a chronic phase as well as the phase of acute illness. Within the acute phase, two stages have been identified: a viral stage during the first five to seven days, during which viremia occurs, followed by a convalescent stage lasting approximately ten days, during which symptoms improve and the virus cannot be detected in the blood. Typically, the disease begins with a sudden high fever that lasts from a few days to a week, and sometimes up to ten days. The fever is usually above and sometimes reaching and may be biphasic—lasting several days, breaking, and then returning. Fever occurs with the onset of viremia, and the level of virus in the blood correlates with the intensity of symptoms in the acute phase. When IgM, an antibody that is a response to the initial exposure to an antigen, appears in the blood, viremia begins to diminish. However, headache, insomnia and an extreme degree of exhaustion remain, usually about five to seven days.
Following the fever, strong joint pain or stiffness occurs; it usually lasts weeks or months, but may last for years. The joint pain can be debilitating, often resulting in near immobility of the affected joints. Joint pain is reported in 87–98% of cases, and nearly always occurs in more than one joint, though joint swelling is uncommon. Typically the affected joints are located in both arms and legs, and are affected symmetrically. Joints are more likely to be affected if they have previously been damaged by disorders such as arthritis. Pain most commonly occurs in peripheral joints, such as the wrists, ankles, and joints of the hands and feet as well as some of the larger joints, typically the shoulders, elbows and knees. Pain may also occur in the muscles or ligaments.
Rash occurs in 40–50% of cases, generally as a maculopapular rash occurring two to five days after onset of symptoms. Digestive symptoms, including abdominal pain, nausea, vomiting or diarrhea, may also occur. In more than half of cases, normal activity is limited by significant fatigue and pain. Infrequently, inflammation of the eyes may occur in the form of iridocyclitis, or uveitis, and retinal lesions may occur.
Temporary damage to the liver may occur.
Rarely, neurological disorders have been reported in association with chikungunya virus, including Guillain–Barré syndrome, palsies, meningoencephalitis, flaccid paralysis and neuropathy. In contrast to dengue fever, Chikungunya fever very rarely causes hemorrhagic complications. Symptoms of bleeding should lead to consideration of alternative diagnoses or co-infection with dengue fever or coexisting congestive hepatopathy.
A viral disease (or viral infection) occurs when an organism's body is invaded by pathogenic viruses, and infectious virus particles (virions)
attach to and enter susceptible cells.
Brazilian hemorrhagic fever (BzHF) is an infectious disease caused by the Sabiá virus, an Arenavirus. The Sabiá virus is one of the arenoviruses from South America to cause hemorrhagic fever. It shares a common progenitor with the Junin virus, Machupo virus, Tacaribe virus, and Guanarito virus. It is an enveloped RNA virus and is highly infectious and lethal. Very little is known about this disease, but it is thought to be transmitted by the excreta of rodents.
There have only been three documented infections of the Sabiá virus, only one of which occurred naturally and the other two cases occurred in the clinical setting. The only naturally occurring case was in 1990, when a female agricultural engineer who was staying in the neighborhood of Jardim Sabiá near São Paulo, Brazil contracted the disease. She presented with hemorrhagic fever and died. Her autopsy showed liver necrosis. A virologist who was studying the woman's disease contracted the virus but survived. Ribavirin was not given in these first two cases. Four years later, in 1994, a researcher was exposed to the virus in a level 3 biohazard facility at Yale University when a centrifuge bottle cracked, leaked, and released aerosolized virus particle. He was successfully treated with ribavirin.
Ribavirin is thought to be effective in treating the illness, similar to other arenaviruses. Compared to the patients who did not receive ribavirin, the patient who was treated with it had a shorter and less severe clinical course. Symptomatic control such as fluids to address dehydration and bleeding may also be required.
The Sabiá virus is a Biosafety Level 4 pathogen.
This virus has also been implicated as a means for bioterrorism, as it can be spread through aerosols.
The symptoms of an infection depend on the type of disease. Some signs of infection affect the whole body generally, such as fatigue, loss of appetite, weight loss, fevers, night sweats, chills, aches and pains. Others are specific to individual body parts, such as skin rashes, coughing, or a runny nose.
In certain cases, infectious diseases may be asymptomatic for much or even all of their course in a given host. In the latter case, the disease may only be defined as a "disease" (which by definition means an illness) in hosts who secondarily become ill after contact with an asymptomatic carrier. An infection is not synonymous with an infectious disease, as some infections do not cause illness in a host.
Chikungunya is an infection caused by the chikungunya virus (CHIKV). Symptoms include fever and joint pain. These typically occur two to twelve days after exposure. Other symptoms may include headache, muscle pain, joint swelling, and a rash. Most people are better within a week; however, occasionally the joint pain may last for months. The risk of death is around 1 in 1,000. The very young, old, and those with other health problems are at risk of more severe disease.
The virus is spread between people by two types of mosquitos: "Aedes albopictus" and "Aedes aegypti". They mainly bite during the day. The virus may circulate within a number of animals including birds and rodents. Diagnosis is by either testing the blood for the virus's RNA or antibodies to the virus. The symptoms can be mistaken for those of dengue fever and Zika fever. After a single infection it is believed most people become immune.
The best means of prevention is overall mosquito control and the avoidance of bites in areas where the disease is common. This may be partly achieved by decreasing mosquitoes' access to water and with the use of insect repellent and mosquito nets. There is no vaccine and no specific treatment as of 2016. Recommendations include rest, fluids, and medications to help with fever and joint pain.
While the disease typically occurs in Africa and Asia, outbreaks have been reported in Europe and the Americas since the 2000s. In 2014 more than a million suspected cases occurred. In 2014 it was occurring in Florida in the continental United States but as of 2016 there was no further locally acquired cases. The disease was first identified in 1952 in Tanzania. The term is from the Kimakonde language and means "to become contorted".
Porcine circoviral disease (PCVD) and Porcine circovirus associated disease (PCVAD), is a disease seen in domestic pigs. This disease causes illness in piglets, with clinical signs including progressive loss of body condition, visibly enlarged lymph nodes, difficulty in breathing, and sometimes diarrhea, pale skin, and jaundice. PCVD is very damaging to the pig-producing industry and has been reported worldwide. PCVD is caused by porcine circovirus type 2 (PCV-2).
The North American industry endorses "PCVAD" and European use "PCVD" to describe this disease.
Acute: The acute form is a sudden onset of the disease at full-force. Symptoms include high fever, anemia (due to the breakdown of red blood cells), weakness, swelling of the lower abdomen and legs, weak pulse, and irregular heartbeat. The horse may die suddenly.
Subacute: A slower, less severe progression of the disease. Symptoms include recurrent fever, weight loss, an enlarged spleen (felt during a rectal examination), anemia, and swelling of the lower chest, abdominal wall, penile sheath, scrotum, and legs.
Chronic: The horse tires easily and is unsuitable for work. The horse may have a recurrent fever and anemia, and may relapse to the subacute or acute form even several years after the original attack.
A horse may also not appear to have any symptoms, yet still tests positive for EIA antibodies. Such a horse can still pass on the disease. According to most veterinarians, horses diagnosed EIA positive usually do not show any sign of sickness or disease.
EIA may cause abortion in pregnant mares. This may occur at any time during the pregnancy if there is a relapse when the virus enters the blood. Most infected mares will abort, however some give birth to healthy foals. Foals are not necessarily infected.
Studies indicate that there are breeds with a tolerance to EIA.
Recent studies in Brazil on living wild horses have shown that in the Pantanal, about 30% of domesticated and about 5.5% of the wild horses are chronically infected with EIA.
Equine infectious anemia or equine infectious anaemia (EIA), also known by horsemen as swamp fever, is a horse disease caused by a retrovirus and transmitted by bloodsucking insects. The virus ("EIAV") is endemic in the Americas, parts of Europe, the Middle and Far East, Russia, and South Africa. The virus is a lentivirus, like human immunodeficiency virus (HIV). Like HIV, EIA can be transmitted through blood, milk, and body secretions.
Transmission is primarily through biting flies, such as the horse-fly and deer-fly. The virus survives up to 4 hours in the vector (epidemiology). Contaminated surgical equipment and recycled needles and syringes, and bits can transmit the disease. Mares can transmit the disease to their foals via the placenta.
The risk of transmitting the disease is greatest when an infected horse is ill, as the blood levels of the virus are then highest.
The MAYV infection is characterized by fever, headache, myalgia, rash, prominent pain in the large joints, and association with rheumatic disease, but these signs and symptoms are unspecific to distinguish from other Arbovirus. The MAYV infection can be confirmed by laboratory testing such us virus isolation, RT-PCR and serology. The virus isolation in cell culture is effective during viremia. RT-PCR helps to identify virus. Serology tests detect antibodies like IgM and the most common assay is IgM-capture enzyme-linked immunosorbant assays (ELISA). This test usually requires a consecutive retest to confirm increasing titers. While the IgG detection is applied for epidemiology studies.
Infections can be classified by the anatomic location or organ system infected, including:
- Urinary tract infection
- Skin infection
- Respiratory tract infection
- Odontogenic infection (an infection that originates within a tooth or in the closely surrounding tissues)
- Vaginal infections
- Intra-amniotic infection
In addition, locations of inflammation where infection is the most common cause include pneumonia, meningitis and salpingitis.
Infectious pancreatic necrosis (IPN) is a severe viral disease of salmonid fish. It is caused by infectious pancreatic necrosis virus, which is a member of the Birnaviridae family. This disease mainly affects young salmonids, such as trout or salmon, of less than six months, although adult fish may carry the virus without showing symptoms. Resistance to infection develops more rapidly in warmer water. It is highly contagious and found worldwide, but some regions have managed to eradicate or greatly reduce the incidence of disease. The disease is normally spread horizontally via infected water, but spread also occurs vertically. It is not a zoonosis.
Zoonoses are infectious diseases of animals (usually vertebrates) that can naturally be transmitted to humans.
Major modern diseases such as Ebola virus disease and salmonellosis are zoonoses. HIV was a zoonotic disease transmitted to humans in the early part of the 20th century, though it has now evolved to a separate human-only disease. Most strains of influenza that infect humans are human diseases, although many strains of swine and bird flu are zoonoses; these viruses occasionally recombine with human strains of the flu and can cause pandemics such as the 1918 Spanish flu or the 2009 swine flu. "Taenia solium" infection is one of the neglected tropical diseases with public health and veterinary concern in endemic regions. Zoonoses can be caused by a range of disease pathogens such as viruses, bacteria, fungi and parasites; of 1,415 pathogens known to infect humans, 61% were zoonotic. Most human diseases originated in animals; however, only diseases that routinely involve animal to human transmission, like rabies, are considered direct zoonosis.
Zoonoses have different modes of transmission. In direct zoonosis the disease is directly transmitted from animals to humans through media such as air (influenza) or through bites and saliva (rabies). In contrast, transmission can also occur via an intermediate species (referred to as a vector), which carry the disease pathogen without getting infected. When humans infect animals, it is called reverse zoonosis or anthroponosis. The term is from Greek: ζῷον "zoon" "animal" and νόσος "nosos" "sickness".
A list of the more common and well-known diseases associated with infectious pathogens is provided and is not intended to be a complete listing.
Spondweni fever is an infectious disease caused by the Spondweni virus. It is characterized by a fever, chills, nausea, headaches, malaise and epistaxis. Transmitted by mosquitoes, it is found in sub-Saharan Africa and Papua New Guinea.
Zoonotic transmission can occur in any context in which there is companionistic (pets), economic (farming, etc.), predatory (hunting, butchering or consuming wild game) or research contact with or consumption of animals, animal products, or animal derivatives (vaccines, etc.).
The clinical presentation of prion diseases will vary from patient to patient. However, some general characteristics of prion diseases are listed below.
Infections associated with diseases are those that are associated with possible infectious etiologies, that meet the requirements of Koch's postulates. Other methods of causation are described by the Bradford Hill criteria and Evidence-based medicine. Koch's postulates have been altered by some epidemiologists based upon sequence-based detection of distinctive pathogenic nucleic acid sequences in tissue samples. Using this method, absolute statements are not always possible regarding causation. Since this is true, higher amounts of distinctive pathogenic nucleic acid sequences would be in those exhibiting disease compared to controls since inoculating those without the pathogen is unethical. In addition, the DNA load should drop or become lower with the resolution of the disease. The distinctive pathogenic nucleic acid sequences load should also increase upon recurrence.
Other conditions are met to establish cause or association including studies in disease transmission. This means that there should be a high disease occurrence in those carrying an pathogen, evidence of a serologicalresponse to the pathogen, and the success of vaccination prevention. Direct visualization of the pathogen, the identification of different strains, immunological responses in the host, how the infection is spread and, the combination of these should all be taken into account to determine the probability that an infectious agent is the cause of the disease. A conclusive determination of a causal role of an infectious agent for in a particular disease using Koch's postulates is desired yet this might not be possible.
The leading cause of death worldwide is cardiovascular disease, but infectious diseases are the second leading cause of death worldwide and the leading cause of death in infants and children.
Before puberty, the disease typically only produces flu-like symptoms, if any at all. When found, symptoms tend to be similar to those of common throat infections (mild pharyngitis, with or without tonsillitis).
In adolescence and young adulthood, the disease presents with a characteristic triad:
- Fever – usually lasting 14 days; often mild
- Sore throat – usually severe for 3–5 days, before resolving in the next 7–10 days.
- Swollen glands – mobile; usually located around the back of the neck (posterior cervical lymph nodes) and sometimes throughout the body.
Another major symptom is feeling tired. Headaches are common, and abdominal pains with nausea or vomiting sometimes also occur. Symptoms most often disappear after about 2–4 weeks. However, fatigue and a general feeling of being unwell (malaise) may sometimes last for months. Fatigue lasts more than one month in an estimated 28% of cases. Mild fever, swollen neck glands and body aches may also persist beyond 4 weeks. Most people are able to resume their usual activities within 2–3 months.
The most prominent sign of the disease is often the pharyngitis, which is frequently accompanied by enlarged tonsils with pus—an exudate similar to that seen in cases of strep throat. In about 50% of cases, small reddish-purple spots called petechiae can be seen on the roof of the mouth. Palatal enanthem can also occur, but is relatively uncommon.
Spleen enlargement is common in the second and third weeks, although this may not be apparent on physical examination. Rarely the spleen may rupture. There may also be some enlargement of the liver. Jaundice occurs only occasionally.
A small minority of people spontaneously present a rash, usually on the arms or trunk, which can be macular (morbilliform) or papular. Almost all people given amoxicillin or ampicillin eventually develop a generalized, itchy maculopapular rash, which however does not imply that the person will have adverse reactions to penicillins again in the future. Occasional cases of erythema nodosum and erythema multiforme have been reported.
A sharp rise in mortality is often seen (depending on the virulence of the disease). Other clinical signs include abdominal swelling, anorexia, abnormal swimming, darkening of the skin, and trailing of the feces from the vent. On necropsy, internal damage (viral necrosis) to the pancreas and thick mucus in the intestines often is present. Surviving fish should recover within one to two weeks.
Diagnostic methods for the detection of the disease include: characteristic histological pancreatic lesion, PCR, indirect fluorescent antibody testing, ELISA, and virus culture. High virus titers can be isolated from carrier animals.
Viral disease is usually detected by clinical presentation, for instance severe muscle and joint pains preceding fever, or skin rash and swollen lymph glands.
Laboratory investigation is not directly effective in detecting viral infections, because they do not themselves increase the white blood cell count. Laboratory investigation may be useful in diagnosing associated bacterial infections, however.
Viral infections are commonly of limited duration, so treatment usually consists in reducing the symptoms; antipyretic and analgesic drugs are commonly prescribed.
Erythema infectiosum or fifth disease is one of several possible manifestations of infection by parvovirus B19.
The name "fifth disease" comes from its place on the standard list of rash-causing childhood diseases, which also includes measles (1st), scarlet fever (2nd), rubella (3rd), Dukes' disease (4th, however is no longer widely accepted as distinct) and roseola (6th).
Both PMWS and porcine dermatitis and nephropathy syndrome (PDNS) are associated to PCV-2. Many pigs affected by the circovirus also seem to develop secondary bacterial infections, like Glässer disease ("Haemophilus parasuis"), pulmonary pasteurellosis, colibacilosis, salmonellosis and others. Postmortem lesions occur in multiple organs, especially in lymphoid tissues and lung, giving rise to the term "multisystemic". Lesions may also affect the skin, kidney, reproductive tissue, brain, or blood vessels.
Wasting pigs is the most common sign of PMWS infection, increasing the mortality rate significantly.