Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The classic triad of symptoms found in Wernicke's encephalopathy is:
- ophthalmoplegia (later expanded to other eye movement abnormalities, most commonly affecting the lateral rectus or any eye sign. Lateral nystagmus is most commonly seen although lateral rectus palsy, usually bilateral, may be seen).
- ataxia (later expanded to imbalance or any cerebellar signs)
- confusion (later expanded to other mental changes. Has 82% incidence in diagnosis cases)
However, in actuality, only a small percentage of patients experience all three symptoms, and the full triad occurs more frequently among those who have overused alcohol.
Also a much more diverse range of symptoms has been found in patients with this condition, including:
- pupillary changes, retinal hemorrhage, papilledema, impaired vision and hearing, vision loss
- hearing loss,
- fatigability, apathy, irritability, drowsiness, psycho and/or motor slowing
- dysphagia, blush, sleep apnea, epilepsy and stupor
- lactic acidosis
- memory impairment, amnesia, depression, psychosis
- hypothermia, polyneuropathy, hyperhidrosis.
Although hypothermia is usually diagnosed with a body temperature of 35 °C / 95° Fahrenheit, or less, incipient cooling caused by deregulation in the CNS needs to be monitored because it can promote the development of an infection. The patient may report feeling cold, followed by mild chills, cold skin, moderate pallor, tachycardia, hypertension, tremor or piloerection. External warming techniques are advised to prevent hypothermia.
Among the frequently altered functions are the cardio circulatory. There may be tachycardia, dyspnea, chest pain, orthostatic hypotension, changes in heart rate and blood pressure. The lack of thiamine sometimes affects other major energy consumers, the myocardium, and also patients may have developed cardiomegaly. Heart failure with lactic acidosis syndrome has been observed. Cardiac abnormalities are an aspect of the WE, which was not included in the traditional approach, and are not classified as a separate disease.
Infections have been pointed out as one of the most frequent triggers of death in WE. Furthermore, infections are usually present in pediatric cases.
In the last stage others symptoms may occur: hyperthermia, increased muscle tone, spastic paralysis, choreic dyskinesias and coma.
Because of the frequent involvement of heart, eyes and peripheral nervous system, several authors prefer to call it Wernicke disease rather than simply encephalopathy.
Early symptoms are nonspecific, and it has been stated that WE may present nonspecific findings. In Wernicke Korsakoff’s syndrome some single symptoms are present in about one-third.
Depending on the location of the brain lesion different symptoms are more frequent:
- Brainstem tegmentum. - Ocular: pupillary changes. Extraocular muscle palsy; gaze palsy: nystagmus.
- Hypothalamus. Medulla: dorsal nuc. of vagus. - Autonomic dysfunct.: temperature; cardiocirculatory; respiratory.
- Medulla: vestibular region. Cerebellum. - Ataxia.
- Dorsomedial nuc. of thalamus. Mammillary bodies. - Amnestic syndrome for recent memory.
Mamillary lesion are characteristic-small petechial hemorrhages are found.
- Diffuse cerebral dysfunction.- Altered cognition: global confusional state.
- Brainstem: periaqueductal gray.- Reduction of consciousness
- Hypothalamic lesions may also affect the immune system, which is known in alcohol abusers, causing dysplasias and infections.
The hallmark of encephalopathy is an altered mental state. Characteristic of the altered mental state is impairment of the cognition, attention, orientation, sleep–wake cycle and consciousness. An altered state of consciousness may range from failure of selective attention to drowsiness. Hypervigilance may be present; with or without: congnitive deficits, headache, epileptic seizures, myoclonus (involuntary twitching of a muscle or group of muscles) or asterixis ("flapping tremor" of the hand when wrist is extended).
Depending on the type and severity of encephalopathy, common neurological symptoms are loss of cognitive function, subtle personality changes, inability to concentrate. Other neurological signs may include dysarthria, hypomimia, problems with movements (they can be clumsy or slow), ataxia, tremor. Another neurological signs may include involuntary grasping and sucking motions, nystagmus (rapid, involuntary eye movement), jactitation (restless picking at things characteristic of severe infection), and respiratory abnormalities such as Cheyne-Stokes respiration (cyclic waxing and waning of tidal volume), apneustic respirations and post-hypercapnic apnea. Focal neurological deficits are less common.
Encephalopathies exhibits both neurologic and psychopathologic symptoms.
Wernicke encephalopathy (alcoholic encephalopathy) also develop Korsakoff's syndrome, characterized by amnestic-confabulatory syndrome: retrograde amnesia, anterograde amnesia, confabulations (invented memories), poor recall and disorientation.
Anti-NMDA receptor encephalitis is the most common autoimmune encephalitis. It can cause paranoid and grandiose delusions, agitation, hallucinations (visual and auditory), bizarre behavior, fear, short-term memory loss, confusion.
HIV encephalopathy develop dementia ( †).
The mildest form of hepatic encephalopathy is difficult to detect clinically, but may be demonstrated on neuropsychological testing. It is experienced as forgetfulness, mild confusion, and irritability. The first stage of hepatic encephalopathy is characterised by an inverted sleep-wake pattern (sleeping by day, being awake at night). The second stage is marked by lethargy and personality changes. The third stage is marked by worsened confusion. The fourth stage is marked by a progression to coma.
More severe forms of hepatic encephalopathy lead to a worsening level of consciousness, from lethargy to somnolence and eventually coma. In the intermediate stages, a characteristic jerking movement of the limbs is observed (asterixis, "liver flap" due to its flapping character); this disappears as the somnolence worsens. There is disorientation and amnesia, and uninhibited behaviour may occur. In the third stage, neurological examination may reveal clonus and positive Babinski sign. Coma and seizures represent the most advanced stage; cerebral oedema (swelling of the brain tissue) leads to death.
Encephalopathy often occurs together with other symptoms and signs of liver failure. These may include jaundice (yellow discolouration of the skin and the whites of the eyes), ascites (fluid accumulation in the abdominal cavity), and peripheral edema (swelling of the legs due to fluid build-up in the skin). The tendon reflexes may be exaggerated, and the plantar reflex may be abnormal, namely extending rather than flexing (Babinski's sign) in severe encephalopathy. A particular smell ("foetor hepaticus") may be detected.
Toxic encephalopathy is often irreversible. If the source of the problem is treated by removing the toxic chemical from the system, further damage can be prevented, but prolonged exposure to toxic chemicals can quickly destroy the brain. Long term studies have demonstrated residual cognitive impairment (primarily attention and information-processing impairment resulting in dysfunction in working memory) up to 10 years following cessation of exposure. Severe cases of toxic encephalopathy can be life-threatening.
"Encephalopathy" is a general term describing brain malfunctions and "toxic" asserts that the malfunction is caused by toxins on the brain. The most prominent characteristic of toxic encephalopathy is an altered mental status. Acute intoxication is a reversible symptom of exposure to many synthetic chemical neurotoxicants. Acute intoxication symptoms include lightheadedness, dizziness, headache and nausea, and regular cumulative exposure to these toxic solvents over a number of years puts the individual at high risk for developing toxic encephalopathy. Chronic exposure to low levels of neurotoxic chemicals can also cause reversible changes in mood and affect which resolve with cessation of exposure. Acute and chronic toxic encephalopathy on the other hand, are persistent changes in neurological function that typically occur with exposure to higher concentrations and longer durations respectively. The symptoms of acute and chronic toxic encephalopathy do not resolve with cessation of exposure and can include memory loss, small personality changes/increased irritability, insidious onset of concentration difficulties, involuntary movements (parkinsonism), fatigue, seizures, arm strength problems, and depression. Neurobehavioral effects of occupational exposure to organic solvents exists among painters. The condition may also be referred to as substance-induced persistent dementia.
Magnetic Resonance Imaging (MRI) analyses have also demonstrated increased rates of dopamine synthesis in the putamen, reduced anterior and total corpus callosum volume, demyelination in the parietal white matter, basal ganglia, and thalamus, as well as atypical activation of frontal areas of the brain due to neural compensation. A thorough and standard diagnostic process is paramount with toxic encephalopathy, including a careful occupational history, medical history, and standardized imaging/neurobehavioral testing.
WE is characterized by the presence of a triad of symptoms;
1. Ocular disturbances (ophthalmoplegia)
2. Changes in mental state (confusion)
3. Unsteady stance and gait (ataxia)
This triad of symptoms results from a deficiency in vitamin B which is an essential coenzyme. The aforementioned changes in mental state occur in approximately 82% of patients' symptoms of which range from confusion, apathy, inability to concentrate, and a decrease in awareness of the immediate situation they are in. If left untreated, WE can lead to coma or death. In about 29% of patients, ocular disturbances consist of nystagmus and paralysis of the lateral rectus muscles or other muscles in the eye. A smaller percentage of patients experience a decrease in reaction time of the pupils to light stimuli and swelling of the optic disc which may be accompanied by retinal hemorrhage. Finally, the symptoms involving stance and gait occur in about 23% of patients and result from dysfunction in the cerebellum and vestibular system. Other symptoms that have been present in cases of WE are stupor, low blood pressure (hypotension), elevated heart rate (tachycardia), as well as hypothermia, epileptic seizures and a progressive loss of hearing.
Interestingly, about 19% of patients have none of the symptoms in the classic triad at first diagnosis of WE; however, usually one or more of the symptoms develops later as the disease progresses.
Hepatic encephalopathy (HE) is an altered level of consciousness as a result of liver failure. Onset may be gradual or sudden. Other symptoms may include movement problems, changes in mood, or changes in personality. In the advanced stages it can result in a coma.
Hepatic encephalopathy can occur in those with acute or chronic liver disease. Episodes can be triggered by infections, GI bleeding, constipation, electrolyte problems, or certain medications. The underlying mechanism is believed to involve the build up of ammonia in the blood, a substance that is normally removed by the liver. The diagnosis is typically made after ruling out other potential causes. It may be supported by blood ammonia levels, an electroencephalogram, or a CT scan of the brain.
Hepatic encephalopathy is possibly reversible with treatment. This typically involves supportive care and addressing the triggers of the event. Lactulose is frequently used to decrease ammonia levels. Certain antibiotics and probiotics are other potential options. A liver transplant may improve outcomes in those with severe disease.
More than 40% of people with cirrhosis develop hepatic encephalopathy. More than half of those with cirrhosis and significant HE live less than a year. In those who are able to get a liver transplant, the risk of death is less than 30% over the subsequent five years. The condition has been described since at least 1860.
The syndrome is a combined manifestation of two namesake disorders, Wernicke's encephalopathy and Korsakoff's psychosis. It involves an acute Wernicke-encephalopathy phase, followed by the development of a chronic Korsakoff's syndrome phase.
It typically presents as a severe encephalopathy with myoclonic seizures, is rapidly progressive and eventually results in respiratory arrest.Standard evaluation for inborn errors of metabolism and other causes of this presentation does not reveal any abnormality (no acidosis, no hypoglycaemia, or hyperammonaemia and no other organ affected). Pronounced and sustained hiccups in an encephalopathic infant have been described as a typical observation in non-ketotic hyperglycinaemia.
Polioencephalomalacia (PEM), also referred to as cerebrocortical necrosis (CCN), is a neurological disease seen in ruminants that is caused by disrupted thiamine production in the body. Thiamine is a key chemical in glucose metabolism that, when definicient, is most threatening to neurological activity. Cattles, sheep, goat, and other ruminants that are diagnosed with PEM or pre-PEM suffer opishotonus, cortical blindness, disoriented movement, and eventually fatality, if left untreated. Current data shows that the onset of PEM can range from birth to late adulthood.
Clinical presentation of CPM is heterogeneous and depend on the regions of the brain involved. Prior to its onset, patients may present with the neurological signs and symptoms of hyponatraemic encephalopathy such as nausea and vomiting, confusion, headache and seizures. These symptoms may resolve with normalisation of the serum sodium concentration. Three to five days later, a second phase of neurological manifestations occurs correlating with the onset of myelinolysis. Observable immediate precursors may include seizures, disturbed consciousness, gait changes, and decrease or cessation of respiratory function.
The classical clinical presentation is the progressive development of spastic quadriparesis, pseudobulbar palsy, and emotional lability (pseudobulbar affect), with other more variable neurological features associated with brainstem damage. These result from a rapid myelinolysis of the corticobulbar and corticospinal tracts in the brainstem.
Korsakoff's syndrome is an amnestic disorder caused by thiamine deficiency usually associated prolonged ingestion of alcohol. It is rare among other people but some cases have been observed after bariatric surgeries, when deficiency was not prevented by use of nutritional supplements. This neurological disorder is caused by a lack of thiamine (vitamin B) in the brain, and is also often exacerbated by the neurotoxic effects of alcohol. When Wernicke's encephalopathy accompanies Korsakoff's psychosis the combination is called the Wernicke–Korsakoff syndrome; however, a recognized episode of Wernicke's is not always obvious. The syndrome and psychosis are named after Sergei Korsakoff, a Russian neuropsychiatrist who discovered the syndrome during the late 19th century.
There are several different forms of glycine encephalopathy, which can be distinguished by the age of onset, as well as the types and severity of symptoms. All forms of glycine encephalopathy present with only neurological symptoms, including mental retardation (IQ scores below 20 are common), hypotonia, apneic seizures, and brain malformations.
With the classical, or neonatal presentation of glycine encephalopathy, the infant is born after an unremarkable pregnancy, but presents with lethargy, hypotonia, apneic seizures and myoclonic jerks, which can progress to apnea requiring artificial ventilation, and often death. Apneic patients can regain spontaneous respiration in their second to third week of life. After recovery from the initial episode, patients have intractable seizures and profound mental retardation, remaining developmentally delayed. Some mothers comment retrospectively that they noticed fetal rhythmic "hiccuping" episodes during pregnancy, most likely reflecting seizure episodes in utero. Patients with the infantile form of glycine encephalopathy do not show lethargy and coma in the neonatal period, but often have a history of hypotonia. They often have seizures, which can range in severity and responsiveness to treatment, and they are typically developmentally delayed. Glycine encephalopathy can also present as a milder form with episodic seizures, ataxia, movement disorders, and gaze palsy during febrile illness. These patients are also developmentally delayed, to varying degrees. In the later onset form, patients typically have normal intellectual function, but present with spastic diplegia and optic atrophy.
Transient neonatal hyperglycinemia has been described in a very small number of cases. Initially, these patients present with the same symptoms and laboratory results that are seen in the classical presentation. However, levels of glycine in plasma and cerebrospinal fluid typically normalize within eight weeks, and in five of six cases there were no neurological issues detected at follow-up times up to thirteen years. A single patient was severely retarded at nine months. The suspected cause of transient neonatal hyperglicinemia is attributed to low activity of the glycine cleavage system in the immature brain and liver of the neonate.
There are seven major symptoms of Korsakoff's syndrome (amnestic-confabulatory syndrome):
1. anterograde amnesia, memory loss for events after the onset of the syndrome
2. retrograde amnesia, memory loss extends back for some time before the onset of the syndrome
3. amnesia of fixation, also known as fixation amnesia (loss of immediate memory, a person being unable to remember events of the past few minutes)
4. confabulation, that is, invented memories which are then taken by the patient as true due to gaps in memory, with such gaps sometimes associated with blackouts
5. minimal content in conversation
6. lack of insight
7. apathy – the patients lose interest in things quickly, and generally appear indifferent to change.
Benon R. and LeHuché R. (1920) described the characteristic signs of Korsakoff syndrome with some additional features: confabulation (false memories), fixation amnesia, paragnosia or false recognition of places, mental excitation, euphoria, etc.
Thiamine is essential for the decarboxylation of pyruvate, and deficiency during this metabolic process is thought to cause damage to the medial thalamus and mammillary bodies of the posterior hypothalamus, as well as generalized cerebral atrophy. These brain regions are all parts of the limbic system, which is heavily involved in emotion and memory.
Korsakoff's involves neuronal loss, that is, damage to neurons; gliosis, which is a result of damage to supporting cells of the central nervous system, and hemorrhage or bleeding also occurs in mammillary bodies. Damage to the dorsomedial nucleus or anterior group of the thalamus (limbic-specific nuclei) is also associated with this disorder. Cortical dysfunction may have arisen from thiamine deficiency, alcohol neurotoxicity, and/or structural damage in the diencephalon.
Originally, it was thought that a lack of initiative and a flat affect were important characteristics of emotional presentation in sufferers. Studies have questioned this, proposing that neither is necessarily a symptom of Korsakoff's. Research suggesting that Korsakoff's patients are emotionally unimpaired has made this a controversial topic. It can be argued that apathy, which usually characterizes Korsakoff's patients, reflects a deficit of emotional "expressions", without affecting the "experience" or perception of emotion.
Korsakoff's Syndrome causes deficits in declarative memory in most patients, but leaves implicit spatial, verbal, and procedural memory functioning intact. People who have Korsakoff's syndrome have deficits in the processing of contextual information. Context memories refers to the where and when of experiences, and is an essential part of recollection. The ability to store and retrieve this information, such as spatial location or temporal order information, is impaired.
Research has also suggested that Korsakoff patients have impaired executive functions, which can lead to behavioral problems and interfere with daily activities. It is unclear, however, which executive functions are affected most. Nonetheless, IQ is usually not affected by the brain damage associated with Korsakoff's syndrome.
At first it was thought that Korsakoff's patients used confabulation to fill in memory gaps. However, it has been found that confabulation and amnesia do not necessarily co-occur. Studies have shown that there is dissociation between provoked confabulation, spontaneous confabulation (which is unprovoked), and false memories. That is, patients could be led to believe certain things had happened which actually had not, but so could people without Korsakoff’s syndrome.
Central pontine myelinolysis (CPM) is a neurological disorder caused by severe damage of the myelin sheath of nerve cells in the area of the brainstem termed the "pons", predominately of iatrogenic, treatment-induced cause. It is characterized by acute paralysis, dysphagia (difficulty swallowing), and dysarthria (difficulty speaking), and other neurological symptoms.
Central pontine myelinolysis was first described by Adams et al. in 1959 as a clinicopathological entity. The original paper described four cases with fatal outcomes, and the findings on autopsy. The cause was not known then but the authors suspected either a toxin or a nutritional deficiency. ‘Central pontine’ indicated the site of the lesion and ‘myelinolysis’ was used to emphasise that myelin was affected preferentially compared to the other neuronal elements. The authors intentionally avoided the term ‘demyelination’ to describe the condition, in order to differentiate this condition from multiple sclerosis and other neuroinflammatory disorders.
Since this original description, demyelination in other areas of the central nervous system associated with osmotic stress has been described outside the pons. The more general term "osmotic demyelination syndrome" is now preferred to the original more restrictive term "central pontine myelinolysis".
Central pontine myelinolysis presents most commonly as a complication of treatment of patients with profound hyponatremia (low sodium), which can result from a varied spectrum of conditions, based on different mechanisms. It occurs as a consequence of a rapid rise in serum tonicity following treatment in individuals with chronic, severe hyponatremia who have made intracellular adaptations to the prevailing hypotonicity.
Reported neurological symptoms include difficulty sleeping, decrease in intellectual capacity, dizziness, altered visual perceptive abilities, affected psychomotor skills, forgetfulness, and disorientation. The mechanism behind these symptoms beyond solvent molecules crossing the blood-brain barrier is currently unknown. Neurological signs include impaired vibratory sensation at extremities and an inability to maintain steady motion, a possible effect from psychomotor damage in the brain. Other symptoms that have been seen range from fatigue, decreased strength, and unusual gait. One study found that there was a correlation between decreased red blood cell count and level of solvent exposure, but not enough data has been found to support any blood tests to screen for CSE.
Symptoms of beriberi include weight loss, emotional disturbances, impaired sensory perception, weakness and pain in the limbs, and periods of irregular heart rate. Edema (swelling of bodily tissues) is common. It may increase the amount of lactic acid and pyruvic acid within the blood. In advanced cases, the disease may cause high-output cardiac failure and death.
Symptoms may occur concurrently with those of Wernicke's encephalopathy, a primarily neurological thiamine-deficiency related condition.
Beriberi is divided into four categories as follows. The first three are historical and the fourth, gastrointestinal beriberi, was recognized in 2004:
- "Dry beriberi" specially affects the peripheral nervous system
- "Wet beriberi" specially affects the cardiovascular system and other bodily systems
- "Infantile beriberi" affects the babies of malnourished mothers
- "Gastrointestinal beriberi" affects the digestive system and other bodily systems
Clinical signs of PEM are variable depending on the area of the cerebral cortex affected and may include head pressing, dullness, opisthotonos, central blindness, anorexia, muscle tremors, teeth grinding, trismus, salivation, drooling, convulsions, nystagmus, clonic convulsions, and recumbency. Early administration of thiamine may be curative, but if the lesion is more advanced, then surviving animals may remain partially blind and mentally dull.
Sensory symptoms are gradually followed by motor symptoms. Motor symptoms may include muscle cramps and weakness, erectile dysfunction in men, problems urinating, constipation, and diarrhea. Individuals also may experience muscle wasting and decreased or absent deep tendon reflexes. Some people may experience frequent falls and gait unsteadiness due to ataxia. This ataxia may be caused by cerebellar degeneration, sensory ataxia, or distal muscle weakness. Over time, alcoholic polyneuropathy may also cause difficulty swallowing (dysphagia), speech impairment (disarthria), muscle spasms, and muscle atrophy.
In addition to alcoholic polyneuropathy, the individual may also show other related disorders such as Wernicke-Korsakoff syndrome and cerebellar degeneration that result from alcoholism-related nutritional disorders.
Dry beriberi causes wasting and partial paralysis resulting from damaged peripheral nerves. It is also referred to as endemic neuritis. It is characterized by:
- Difficulty in walking
- Tingling or loss of sensation (numbness) in hands and feet
- Loss of tendon reflexes
- Loss of muscle function or paralysis of the lower legs
- Mental confusion/speech difficulties
- Pain
- Involuntary eye movements (nystagmus)
- Vomiting.
A selective impairment of the large proprioceptive sensory fibers without motor impairment can occur and present as a prominent sensory ataxia, which is a loss of balance and coordination due to loss of the proprioceptive inputs from the periphery and loss of position sense.
Alcoholic polyneuropathy usually has a gradual onset over months or even years although axonal degeneration often begins before an individual experiences any symptoms. An early warning sign (prodrome) of the possibility of developing alcoholic polyneuropathy, specially in a chronic alcoholic, would be weight loss because this usually signifies a nutritional deficiency that can lead to the development of the disease.
The disease typically involves sensory and motor loss, as well as painful physical perceptions (paresthesias), though all sensory modalities may be involved. Symptoms that affect the sensory and motor systems seem to develop symmetrically. For example, if the right foot is affected, the left foot is affected simultaneously or soon becomes affected. In most cases, the legs are affected first, followed by the arms. The hands usually become involved when the symptoms reach above the ankle. This is called a stocking-and-glove pattern of sensory disturbances.
Polyneuropathy spans a large range of severity. Some cases are seemingly asymptomatic and may only be recognized on careful examination. The most severe cases may cause profound physical disability.
A 1988 study indicated that some solvent-exposed workers suffered from loss of smell or damage to color vision; however this may or may not have been actually caused by exposure to organic solvents. There is other evidence for subtle impairment of color vision (especially tritan or "blue-yellow" losses), synergistic exacerbation of hearing loss, and loss of the sense of smell (anosmia).
The following list includes such examples:
- - hyperammonemia due to ornithine transcarbamylase deficiency
- - hyperinsulinism-hyperammonemia syndrome (glutamate dehydrogenase 1)
- - hyperornithinemia-hyperammonemia-homocitrullinuria
- - hyperammonemia due to N-acetylglutamate synthetase deficiency
- - hyperammonemia due to carbamoyl phosphate synthetase I deficiency (carbamoyl phosphate synthetase I)
- - hyperlysinuria with hyperammonemia (genetics unknown)
- Methylmalonic acidemia
- Isovaleric acidemia
- Propionic acidemia
- Carnitine palmitoyltransferase II deficiency
- Transient hyperammonemia of the newborn, specifically in the preterm