Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most common symptoms of acquired and transient cortical blindness include:
- A complete loss of visual sensation and of vision
- Preservation/sparing of the abilities to perceive light and/or moving, but not static objects (Riddoch syndrome)
- A lack of visual fixation and tracking
- Denial of visual loss (Anton–Babinski syndrome)
- Visual hallucinations
- Macular sparing, in which vision in the fovea is spared from the blindness.
The definition of visual impairment is reduced vision not corrected by glasses or contact lenses. The World Health Organization uses the following classifications of visual impairment. When the vision in the better eye with best possible glasses correction is:
- 20/30 to 20/60 : is considered mild vision loss, or near-normal vision
- 20/70 to 20/160 : is considered moderate visual impairment, or moderate low vision
- 20/200 to 20/400 : is considered severe visual impairment, or severe low vision
- 20/500 to 20/1,000 : is considered profound visual impairment, or profound low vision
- More than 20/1,000 : is considered near-total visual impairment, or near total blindness
- No light perception : is considered total visual impairment, or total blindness
Blindness is defined by the World Health Organization as vision in a person's best eye with best correction of less than 20/500 or a visual field of less than 10 degrees. This definition was set in 1972, and there is ongoing discussion as to whether it should be altered to officially include uncorrected refractive errors.
A patient with cortical blindness has no vision but the response of his/her pupil to light is intact (as the reflex does not involve the cortex). Therefore, one diagnostic test for cortical blindness is to first objectively verify the optic nerves and the non-cortical functions of the eyes are functioning normally. This involves confirming that patient can distinguish light/dark, and that his/her pupils dilate and contract with light exposure. Then, the patient is asked to describe something he/she would be able to recognize with normal vision. For example, the patient would be asked the following:
- "How many fingers am I holding up?"
- "What does that sign (on a custodian's closet, a restroom door, an exit sign) say?"
- "What kind of vending machine (with a vivid picture of a well-known brand name on it) is that?"
Patients with cortical blindness will not be able to identify the item being questioned about at all or will not be able to provide any details other than color or perhaps general shape. This indicates that the lack of vision is neurological rather than ocular. It specifically indicates that the occipital cortex is unable to correctly process and interpret the intact input coming from the retinas.
Fundoscopy should be normal in cases of cortical blindness. Cortical blindness can be associated with visual hallucinations, denial of visual loss (Anton–Babinski syndrome), and the ability to perceive moving but not static objects. (Riddoch syndrome).
Visual impairment, also known as vision impairment or vision loss, is a decreased ability to see to a degree that causes problems not fixable by usual means, such as glasses. Some also include those who have a decreased ability to see because they do not have access to glasses or contact lenses. Visual impairment is often defined as a best corrected visual acuity of worse than either 20/40 or 20/60. The term blindness is used for complete or nearly complete vision loss. Visual impairment may cause people difficulties with normal daily activities such as driving, reading, socializing, and walking.
The most common causes of visual impairment globally are uncorrected refractive errors (43%), cataracts (33%), and glaucoma (2%). Refractive errors include near sighted, far sighted, presbyopia, and astigmatism. Cataracts are the most common cause of blindness. Other disorders that may cause visual problems include age related macular degeneration, diabetic retinopathy, corneal clouding, childhood blindness, and a number of infections. Visual impairment can also be caused by problems in the brain due to stroke, premature birth, or trauma among others. These cases are known as cortical visual impairment. Screening for vision problems in children may improve future vision and educational achievement. Screening adults without symptoms is of uncertain benefit. Diagnosis is by an eye exam.
The World Health Organization (WHO) estimates that 80% of visual impairment is either preventable or curable with treatment. This includes cataracts, the infections river blindness and trachoma, glaucoma, diabetic retinopathy, uncorrected refractive errors, and some cases of childhood blindness. Many people with significant visual impairment benefit from vision rehabilitation, changes in their environment, and assistive devices.
As of 2015 there were 940 million people with some degree of vision loss. 246 million had low vision and 39 million were blind. The majority of people with poor vision are in the developing world and are over the age of 50 years. Rates of visual impairment have decreased since the 1990s. Visual impairments have considerable economic costs both directly due to the cost of treatment and indirectly due to decreased ability to work.
Seeing rainbows around lights, especially at night, usually indicates swelling of the cornea. This may occur from a variety of causes which are discussed under Corneal Edema. Cataract can sometimes cause this also.
Colour vision is perceived mainly by the macula, which is the central vision portion of the retina. Thus any disorder affecting the macula may cause a disturbance in color vision. However, about 8% of males and 0.5% of females have some version of "colour blindness" from birth. Usually this is a genetically inherited trait, and is of the "red-green confusion" variety. The reds, browns, olives, and gold may be confused. Purple may be confused with blue, and pastel pinks, oranges, yellows, and greens look similar. Usually both eyes are affected equally.
There are many obscure macular retinal disorders that can lead to a loss of colour vision, and many of these syndromes are inherited as well. There may also be a problem with a generalized loss of vision with these problems as well. Other retinal problems can lead to a temporary disturbance of colour vision, such as Central serous chorioretinopathy, Macular Edema of different causes, and Macular Degeneration.
Certain types of cataract can gradually affect the colour vision, but this is usually not noticed until one cataract is removed. The cataract seems to filter out the colour blue, and everything seems more blue after cataract extraction. Optic nerve disorders such as Optic Neuritis can greatly affect colour vision, with colours seeming washed out during or after an episode.
Distortion of vision refers to straight lines not appearing straight, but instead bent, crooked, or wavy. Usually this is caused by distortion of the retina itself. This distortion can herald a loss of vision in macular degeneration, so anyone with distorted vision should seek medical attention by an ophthalmologist promptly. Other conditions leading to swelling of the retina can cause this distortion, such as macular edema and central serous chorioretinopathy.
An Amsler grid can be supplied by an ophthalmologist so that the vision can be monitored for distortion in people who may be predisposed to this problem.
Tunnel vision implies that the peripheral vision, or side vision, is lost, while the central vision remains. Thus, the vision is like looking through a tunnel, or through a paper towel roll. Some disorders that can cause this include:
Glaucoma - severe glaucoma can result in loss of nearly all of the peripheral vision, with a small island of central vision remaining. Sometimes even this island of vision can be lost as well.
Retinitis pigmentosa - This is usually a hereditary disorder which can be part of numerous syndromes. It is more common in males. The peripheral retina develops pigmentary deposits, and the peripheral vision gradually becomes worse and worse. The central vision can be affected eventually as well. People with this problem may have trouble getting around in the dark. Cataract can be a complication as well. There is no known treatment for this disorder, and supplements of Vitamin A have not been proven to help.
Punctate Inner Choroidopathy - This condition is where vessels gro (( material is missing ))
Stroke - a stroke involving both sides of the visual part of the brain may wipe out nearly all of the peripheral vision. Fortunately, this is a very rare occurrence
Childhood blindness is an important cause contributing to the burden of blindness. Blindness in children can be defined as a visual acuity of <3/60 in the eye with better vision of a child under 16 years of age. This generally means that the child cannot see something three feet (about one meter) away, that another child could see if it was 60 feet (about 20 meters) away.
Those experiencing amaurosis are usually advised to consult a physician immediately as any form of vision loss, even if temporary, is a symptom that may indicate the presence of a serious ocular or systemic problem.
Total color blindness can be classified as:
- Acquired achromatopsia (Cerebral achromatopsia)
- Congenital/inherited achromatopsia
- Complete typical achromatopsia
- Incomplete atypical achromatopsia or incomplete atypical dyschromatopsia
Related terms:
- Achromatopsia–The complete lack of the perception of color in a subject, seeing only in black, white, and shades of grey.
- Amblyopia–Defined conceptually by Duke-Elder (1973) as a monocular acuity deficit which is not due to refractive error or any organic abnormality. A neural condition. Poor spatial performance of the precision optical servomechanism of the eyes at nominal illumination levels without any morphological cause. One form of lazy eye.
- Hemeralopia–Reduced visual capacity in bright light. Colloquially, day-blindness.
- Nystagmus–This term is used variously to describe both normal and pathological conditions related to the oculomotor system. In the current context, it is a pathological condition involving an uncontrolled oscillatory movement of the eyes during which the amplitude of oscillation is quite noticeable and the frequency of the oscillation tends to be quite low.
- Photophobia–The avoidance of bright light by those suffering from hemeralopia.
Amaurosis (Greek meaning "darkening", "dark", or "obscure") is vision loss or weakness that occurs without an apparent lesion affecting the eye. It may result from either a medical condition or from excess acceleration, as in flight. The term is the same as the Latin "gutta serena".
Aside from a complete inability to see color, individuals with complete achromatopsia have a number of other ophthalmologic aberrations. Included among these aberrations are greatly decreased visual acuity (<0.1 or 20/200) in daylight, Hemeralopia, nystagmus, and severe photophobia. The fundus of the eye appears completely normal. Also see Pingelap.
When the pathology involves both eyes, it is either homonymous or Heteronymous.
A homonymous hemianopsia is the loss of half of the visual field on the same side in both eyes. The visual images that we see to the right side travel from both eyes to the left side of the brain, while the visual images we see to the left side in each eye travel to the right side of the brain. Therefore, damage to the right side of the posterior portion of the brain or right optic tract can cause a loss of the left field of view in both eyes. Likewise, damage to the left posterior brain or left optic radiation can cause a loss of the right field of vision.
In binasal hemianopsia, vision is missing in the inner (nasal or medial) half of both the right and left visual fields. Information from the nasal visual field falls on the temporal (lateral) retina. Those lateral retinal nerve fibers do not cross in the optic chiasm. Calcification of the internal carotid arteries can impinge the uncrossed, lateral retinal fibers leading to loss of vision in the nasal field.
Note: Clinical testing of visual fields (by confrontation) can produce a false positive result (particularly in inferior nasal quadrants).
Binasal hemianopsia (or binasal hemianopia) is the medical description of a type of partial blindness where vision is missing in the inner half of both the right and left visual field. It is associated with certain lesions of the eye and of the central nervous system, such as congenital hydrocephalus.
There are many causes of blindness in children. Blindness may be due to genetic mutations, birth defects, premature birth, nutritional deficiencies, infections, injuries, and other causes. Severe retinopathy of prematurity (ROP), cataracts and refractive error are also causes.
The most frequently affected parts of the eyes are:
- Whole globe (36%)
- Cornea (36%)
- Lens (11%)
- Retina (6%)
- Optic nerve (5%)
- Uvea (2%)
There are many causes of blurred vision:
- Use of atropine or other anticholinergics
- Presbyopia—Difficulty focusing on objects that are close. Common in the elderly. (Accommodation tends to decrease with age.)
- Cataracts—Cloudiness over the eye's lens, causing poor night-time vision, halos around lights, and sensitivity to glare. Daytime vision is eventually affected. Common in the elderly.
- Glaucoma—Increased pressure in the eye, causing poor night vision, blind spots, and loss of vision to either side. A major cause of blindness. Glaucoma can happen gradually or suddenly—if sudden, it is a medical emergency.
- Diabetes—Poorly controlled blood sugar can lead to temporary swelling of the lens of the eye, resulting in blurred vision. While it resolves if blood sugar control is reestablished, it is believed repeated occurrences promote the formation of cataracts (which are not temporary).
- Diabetic retinopathy—This complication of diabetes can lead to bleeding into the retina. Another common cause of blindness.
- Hypervitaminosis A—Excess consumption of vitamin A can cause blurred vision.
- Macular degeneration—Loss of central vision, blurred vision (especially while reading), distorted vision (like seeing wavy lines), and colors appearing faded. The most common cause of blindness in people over age 60.
- Eye infection, inflammation, or injury.
- Sjögren's syndrome, a chronic autoimmune inflammatory disease that destroys moisture producing glands, including lacrimal (tear)
- Floaters—Tiny particles drifting across the eye. Although often brief and harmless, they may be a sign of retinal detachment.
- Retinal detachment—Symptoms include floaters, flashes of light across your visual field, or a sensation of a shade or curtain hanging on one side of your visual field.
- Optic neuritis—Inflammation of the optic nerve from infection or multiple sclerosis. You may have pain when you move your eye or touch it through the eyelid.
- Stroke or transient ischemic attack
- Brain tumor
- Toxocara—A parasitic roundworm that can cause blurred vision
- Bleeding into the eye
- Temporal arteritis—Inflammation of an artery in the brain that supplies blood to the optic nerve.
- Migraine headaches—Spots of light, halos, or zigzag patterns are common symptoms prior to the start of the headache. A retinal migraine is when you have only visual symptoms without a headache.
- Myopia—Blurred vision may be a systemic sign of local anaesthetic toxicity
- Reduced blinking—Lid closure that occurs too infrequently often leads to irregularities of the tear film due to prolonged evaporation, thus resulting in disruptions in visual perception.
- Carbon monoxide poisoning—Reduced oxygen delivery can effect many areas of the body including vision. Other symptoms caused by CO include vertigo, hallucination and sensitivity to light.
Hemeralopia (from Greek "ημέρα", hemera "day"; and "αλαός", alaos "blindness") is the inability to see clearly in bright light and is the exact opposite of nyctalopia (night blindness). Hemera was the Greek goddess of day and Nyx was the goddess of night. However, it has been used in an opposite sense by many non-English-speaking doctors. It can be described as insufficient adaptation to bright light. It is also called heliophobia and day blindness.
In hemeralopia, daytime vision gets worse, characterised by photoaversion (dislike/avoidance of light) rather than photophobia (eye discomfort/pain in light) which is typical of inflammations of eye. Nighttime vision largely remains unchanged due to the use of rods as opposed to cones (during the day), which are affected by hemeralopia and in turn degrade the daytime optical response. Hence many patients feel they see better at dusk than in daytime.
A 2005 study examined 92 case studies since 1970 in which cerebral lesions affected color vision.
The severity and size of the visual field affected in cerebral achromatopsiacs vary from patient to patient.
Patients with cerebral achromatopsia deny having any experience of color when asked and fail standard clinical assessments like the Farnsworth-Munsell 100-hue test (a test of color ordering with no naming requirements). Patients may often not notice their loss of color vision and merely describe the world they see as being "drab". Most describe seeing the world in "shades of gray". This observation notes a key difference between cerebral and congenital achromatopsia, as those born with achromatopsia have never had an experience of color or gray.
The experience of amaurosis fugax is classically described as a temporary loss of vision in one or both eyes that appears as a black "curtain coming down vertically into the field of vision in one eye;" however, this altitudinal visual loss is relatively uncommon. In one study, only 23.8 percent of patients with transient monocular vision loss experienced the classic "curtain" or "shade" descending over their vision. Other descriptions of this experience include a monocular blindness, dimming, fogging, or blurring. Total or sectorial vision loss typically lasts only a few seconds, but may last minutes or even hours. Duration depends on the cause of the vision loss. Obscured vision due to papilledema may last only seconds, while a severely atherosclerotic carotid artery may be associated with a duration of one to ten minutes. Certainly, additional symptoms may be present with the amaurosis fugax, and those findings will depend on the cause of the transient monocular vision loss.
Bitemporal hemianopsia, also known as bitemporal heteronymous hemianopsia or bitemporal hemianopia, is the medical description of a type of partial blindness where vision is missing in the outer half of both the right and left visual field. It is usually associated with lesions of the optic chiasm, the area where the optic nerves from the right and left eyes cross near the pituitary gland.
Open-angle glaucoma is painless and does not have acute attacks, thus the lack of clear symptoms make screening via regular eye check-ups important. The only signs are gradually progressive visual field loss, and optic nerve changes (increased cup-to-disc ratio on fundoscopic examination).
About 10% of people with closed angles present with acute angle closure characterized by sudden ocular pain, seeing halos around lights, red eye, very high intraocular pressure (>30 mmHg), nausea and vomiting, suddenly decreased vision, and a fixed, mid-dilated pupil. It is also associated with an oval pupil in some cases. Acute angle closure is an emergency.
Opaque specks may occur in the lens in glaucoma, known as glaukomflecken.
In bitemporal hemianopsia vision is missing in the outer (temporal or lateral) half of both the right and left visual fields. Information from the temporal visual field falls on the nasal (medial) retina. The nasal retina is responsible for carrying the information along the optic nerve, and crosses to the other side at the optic chiasm. When there is compression at optic chiasm the visual impulse from both nasal retina are affected, leading to inability to view the temporal, or peripheral, vision. This phenomenon is known as bitemporal hemianopsia. Knowing the neurocircuitry of visual signal flow through the optic tract is very important in understanding bitemporal hemianopsia.
Bitemporal hemianopsia most commonly occurs as a result of tumors located at the mid-optic chiasm. Since the adjacent structure is the pituitary gland, some common tumors causing compression are pituitary adenomas and craniopharyngiomas. Also another relatively common neoplastic cause is meningiomas. A cause of vascular origin is an aneurysm of the anterior communicating artery which arise superior to the chiasm, enlarge, and compress it from above.
The first symptom of this disease is usually a slow loss of vision. Early signs of Retinitis include loss of night vision; making it harder to drive at night. Later signs of retinitis include loss of peripheral vision, leading to tunnel vision. In some cases, symptoms are experienced in only one of the eyes. Experiencing the vision of floaters, flashes, blurred vision and loss of side vision in just one of the eyes is an early indication of the onset of Retinitis.