Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The bare lymphocyte syndrome, type II (BLS II) is a rare recessive genetic condition in which a group of genes called major histocompatibility complex class II (MHC class II) are not expressed.
The result is that the immune system is severely compromised and cannot effectively fight infection. Clinically, this is similar to severe combined immunodeficiency (SCID), in which lymphocyte precursor cells are improperly formed. As a notable contrast, however, bare lymphocyte syndrome does not result in decreased B- and T-cell counts, as the development of these cells is not impaired.
Diarrhea can be among the associated conditions.
Other features include:
- Stunting
- Small hands and feet with long, tapering fingers and clinodactyly
- Dental anomalies in the form of malalignment and malocclusion
In another study of six patients, the patients were investigated further. They were found to have low levels of IGF-1 and markedly retarded bone age.
Children with the Sanjad Sakati syndrome have a triad of:
a) hypoparathyroidism (with episodes of hypocalcemia, hypocalcemic tetany and hypocalcemic seizures.
b) severe mental retardation and
c) dysmorphism.
Typically, children with this syndrome are born low-birth-weight due to intrauterine growth retardation. At birth, there is dysmorphism, which is later typified into the features described below. The child is stunted, often with demonstrable growth hormone deficiency and has moderate to severe mental retardation, mainly as a consequence of repeated seizures brought on by the low blood ionic calcium levels. The immuno-reactive parathormone levels are low to undetectable, with low calcium and high phosphate levels in the blood.
"Dysmorphism" is most evident on the face, with the following features:
- Long narrow face
- Deep-set, small eyes
- Beaked nose
- Large, floppy ears
- Small head (microcephaly) and
- Thin lips with a long philtrum.
Bare lymphocyte syndrome is a condition caused by mutations in certain genes of the major histocompatibility complex or involved with the processing and presentation of MHC molecules. It is a form of severe combined immunodeficiency.
A patient presenting with Hyper IgM syndrome may be affected by simple infectious organisms in exposed regions like the respiratory system. Vaccination against pathogenic organisms may not help these individuals, because vaccinating them does not properly stimulate production of antibodies. Symptoms can include:
- Fever (recurrent infections)
- Low counts of IgA, IgG and IgE antibodies
- CD40L not reactive in T cells
- Recurrent sinopulmonary and GI infections with pyogenic bacteria and opportunistic organisms, and cutaneous manifestations including pyodermas extensive warts.
Blau Syndrome is an autosomal dominant genetic inflammatory disorder which affects the skin, eyes, and joints. It is caused by a mutation in the NOD2 (CARD15) gene. Symptoms usually begin before the age of 4, and the disease manifests as early onset cutaneous sarcoidosis, granulomatous arthritis, and uveitis.
Hyper IgM Syndrome Type 1 (HIGM-1) is the X-linked variant of the Hyper-IgM syndrome. The affected individuals are virtually always male, because males only have one X chromosome, received from their mothers. Their mothers are not symptomatic, even though they are carriers of the allele, because the trait is recessive. Male offspring of these women have a 50% chance of inheriting their mother's mutant allele.
The precise symptoms of a primary immunodeficiency depend on the type of defect. Generally, the symptoms and signs that lead to the diagnosis of an immunodeficiency include recurrent or persistent infections or developmental delay as a result of infection. Particular organ problems (e.g. diseases involving the skin, heart, facial development and skeletal system) may be present in certain conditions. Others predispose to autoimmune disease, where the immune system attacks the body's own tissues, or tumours (sometimes specific forms of cancer, such as lymphoma). The nature of the infections, as well as the additional features, may provide clues as to the exact nature of the immune defect.
X-linked endothelial corneal dystrophy (XECD) is a rare form of corneal dystrophy described first in 2006, based on a 4-generation family of 60 members with 9 affected males and 35 trait carriers, which led to mapping the XECD locus to Xq25. It manifests as severe corneal opacification or clouding, sometimes congenital, in the form of a ground glass, milky corneal tissue, and moon crater-like changes of corneal endothelium. Trait carriers manifest only endothelial alterations resembling moon craters.
As of December 2014, the molecular basis for this disease remained unknown, although 181 genes were known to be within the XECD locus, of which 68 were known to be protein-coding.
White dot syndromes are inflammatory diseases characterized by the presence of white dots on the fundus, the interior surface of the eye. The majority of individuals affected with white dot syndromes are younger than fifty years of age. Some symptoms include blurred vision and visual field loss. There are many theories for the etiology of white dot syndromes including infectious, viral, genetics and autoimmune.
Classically recognized white dot syndromes include:
- Acute posterior multifocal placoid pigment epitheliopathy (APMPPE)
- Birdshot chorioretinopathy
- Multiple evanescent white dot syndrome (MEWDS)
- Acute zonal occult outer retinopathy (AZOOR)
- Multifocal choroiditis and panuveitis (MCP)
- Punctate inner choroiditis (PIC)
- Serpiginous choroiditis
Ataxia-telangiectasia (AT or A-T), also referred to as ataxia-telangiectasia syndrome or Louis–Bar syndrome, is a rare, neurodegenerative, autosomal recessive disease causing severe disability. Ataxia refers to poor coordination and telangiectasia to small dilated blood vessels, both of which are hallmarks of the disease.
A-T affects many parts of the body:
- It impairs certain areas of the brain including the cerebellum, causing difficulty with movement and coordination.
- It weakens the immune system, causing a predisposition to infection.
- It prevents repair of broken DNA, increasing the risk of cancer.
Symptoms most often first appear in early childhood (the toddler stage) when children begin to walk. Though they usually start walking at a normal age, they wobble or sway when walking, standing still or sitting, and may appear almost as if they are drunk. In late pre-school and early school age, they develop difficulty moving their eyes in a natural manner from one place to the next (oculomotor apraxia). They develop slurred or distorted speech, and swallowing problems. Some have an increased number of respiratory tract infections (ear infections, sinusitis, bronchitis, and pneumonia). Because not all children develop in the same manner or at the same rate, it may be some years before A-T is properly diagnosed. Most children with A-T have stable neurologic symptoms for the first 4–5 years of life, but begin to show increasing problems in early school years.
A-T is caused by a defect in the ATM gene, which is responsible for managing the cell’s response to multiple forms of stress including double-strand breaks in DNA. In simple terms, the protein produced by the ATM gene recognizes that there is a break in DNA, recruits other proteins to fix the break, and stops the cell from making new DNA until the repair is complete.
Primary immunodeficiencies are disorders in which part of the body's immune system is missing or does not function normally. To be considered a "primary" immunodeficiency, the cause of the immune deficiency must not be secondary in nature (i.e., caused by other disease, drug treatment, or environmental exposure to toxins). Most primary immunodeficiencies are genetic disorders; the majority are diagnosed in children under the age of one, although milder forms may not be recognized until adulthood. While there are over 100 recognized PIDs, most are very rare. About 1 in 500 people in the United States are born with a primary immunodeficiency. Immune deficiencies can result in persistent or recurring infections, autoinflammatory disorders, tumors, and disorders of various organs. There are currently no cures for these conditions; treatment is palliative and consists of managing infections and boosting the immune system.
Some discrepancy exists as to whether acute zonal occult outer retinopathy (AZOOR) is actually considered a white dot syndrome. However, AZOOR may definitely be related to other diseases included in the white dot syndrome group. AZOOR occurs in young to middle age adults and may eventually progress to retinal cell death. Symptoms include acute visual field loss and photopsias. Suspected causes for AZOOR include autoimmune, viral, and fungal.
Bazex–Dupré–Christol syndrome (also known as "Bazex syndrome", and "follicular atrophoderma and basal cell carcinomas") is a very rare condition inherited in an X-linked dominant fashion. Physical findings typically include follicular atrophoderma, multiple basal cell carcinomas, hypotrichosis, and hypohidrosis.
This condition should not be confused with the unrelated condition acrokeratosis paraneoplastica of Bazex, which may also be referred to Bazex syndrome.
FHM signs overlap significantly with those of migraine with aura. In short, FHM is typified by migraine with aura associated with hemiparesis and, in FHM1, cerebellar degeneration. This cerebellar degeneration can result in episodic or progressive ataxia. FHM can also present with the same signs as benign familial infantile convulsions (BFIC) and alternating hemiplegia of childhood. Other symptoms are altered consciousness (in fact, some cases seem related to head trauma), gaze-evoked nystagmus and coma. Aura symptoms, such as numbness and blurring of vision, typically persist for 30–60 minutes, but can last for weeks and months. An attack resembles a stroke, but unlike a stroke, it resolves in time. These signs typically first manifest themselves in the first or second decade of life.
There is substantial variability in the severity of features of A-T among affected individuals, and at different ages. The following symptoms or problems are either common or important features of A-T:
- Ataxia (difficulty with control of movement) that is apparent early but worsens in school to pre-teen years
- Oculomotor apraxia (difficulty with coordination of head and eye movement when shifting gaze from one place to the next)
- Involuntary movements
- Telangiectasia (dilated blood vessels) over the white (sclera) of the eyes, making them appear bloodshot. These are not apparent in infancy and may first appear at age 5–8 years. Telangiectasia may also appear on sun-exposed areas of skin.
- Problems with infections, especially of the ears, sinuses and lungs
- Increased incidence of cancer (primarily, but not exclusively, lymphomas and leukemias)
- Delayed onset or incomplete pubertal development, and very early menopause
- Slowed rate of growth (weight and/or height)
- Drooling particularly in young children when they are tired or concentrating on activities
- Dysarthria (slurred, slow, or distorted speech sounds)
- Diabetes in adolescence or later
- Premature changes in hair and skin
Many children are initially misdiagnosed as having ataxic cerebral palsy. The diagnosis of A-T may not be made until the preschool years when the neurologic symptoms of impaired gait, hand coordination, speech and eye movement appear or worsen, and the telangiectasia first appear. Because A-T is so rare, doctors may not be familiar with the symptoms, or methods of making a diagnosis. The late appearance of telangiectasia may be a barrier to the diagnosis. It may take some time before doctors consider A-T as a possibility because of the early stability of symptoms and signs.
Cartilage–hair hypoplasia (CHH), also known as McKusick type metaphyseal chondrodysplasia, is a rare genetic disorder. It is a highly pleiotropic disorder that clinically manifests by form of short-limbed dwarfism due to skeletal dysplasia, variable level of immunodeficiency and predisposition to malignancies in some cases. It was first reported in 1965 by McKusick et al. Actor Verne Troyer is affected with this form of dwarfism, as was actor Billy Barty, who was renowned for saying "The name of my condition is Cartilage Hair Syndrome Hypoplasia, but you can just call me Billy."
Pelizaeus–Merzbacher disease (PMD) is a rare central nervous system disorder in which coordination, motor abilities, and intellectual function are delayed to variable extents.
Movements of the eyes left to right.
Little or no movement in the arms or legs.
Respiratory troubles/problems.
Acropectoral syndrome is an autosomal dominant skeletal dysplasia syndrome affecting the hands, feet, sternum, and lumbosacral spine. A recently proposed candidate gene for preaxial polydactyly is LMBR1, encoding a novel transmembrane receptor, which may be an upstream regulator of SHH. The LMBR1 gene is on human chromosome 7q36.
The disease is characterised by bilateral diffuse uveitis, with pain, redness and blurring of vision. The eye symptoms may be accompanied by a varying constellation of systemic symptoms, such as auditory (tinnitus, vertigo, and hypoacusis), neurological (meningismus, with malaise, fever, headache, nausea, abdominal pain, stiffness of the neck and back, or a combination of these factors; meningitis, CSF pleocytosis, cranial nerve palsies, hemiparesis, transverse myelitis and ciliary ganglionitis), and cutaneous manifestations, including poliosis, vitiligo, and alopecia. The vitiligo often is found at the sacral region.
Some individuals have preaxial polydactyly in the feet (unilateral in one, bilateral in 13), consisting of a small extra biphalangeal toe, in most cases with an associated rudimentary extra metatarsal, lying in a soft tissue web between the hallux and second toe. In some cases, this was accompanied by hypoplasia of the head of the first metatarsal and absence of both phalanges of the hallux.
Persons afflicted with X-SCID often have infections very early in life, before three months of age. This occurs due to the decreased amount of immunoglobulin G (IgG) levels in the infant during the three-month stage. This is followed by viral infections such as pneumonitis, an inflammation of the lung which produces common symptoms such as cough, fever, chills, and shortness of breath. A telltale sign of X-SCID is candidiasis, a type of fungal infection caused by "Candida albicans". Candidiasis involves moist areas of the body such as skin, the mouth, respiratory tract, and vagina; symptoms of oral candidiasis include difficulty in swallowing, pain on swallowing and oral lesions. Recurrent eczema-like rashes are also a common symptom. Other common infections experienced by individuals with X-SCID include diarrhea, sepsis, and otitis media. Some other common symptoms that are experienced by X-SCID patients include failure to thrive, gut problems, skin problems, and muscle hypotonia.
In some patients symptoms may not appear for the first six months after birth. This is likely due to passive immunity received from the mother in order to protect the baby from infections until the newborn is able to make its own antibodies. As a result, there can be a silent period where the baby displays no symptoms of X-SCID followed by the development of frequent infections.
In the classical sense, acute graft-versus-host-disease is characterized by selective damage to the liver, skin (rash), mucosa, and the gastrointestinal tract. Newer research indicates that other graft-versus-host-disease target organs include the immune system (the hematopoietic system, e.g., the bone marrow and the thymus) itself, and the lungs in the form of immune-mediated pneumonitis. Biomarkers can be used to identify specific causes of GvHD, such as elafin in the skin. Chronic graft-versus-host-disease also attacks the above organs, but over its long-term course can also cause damage to the connective tissue and exocrine glands.
Acute GvHD of the GI tract can result in severe intestinal inflammation, sloughing of the mucosal membrane, severe diarrhea, abdominal pain, nausea, and vomiting. This is typically diagnosed via intestinal biopsy. Liver GvHD is measured by the bilirubin level in acute patients. Skin GvHD results in a diffuse red maculopapular rash, sometimes in a lacy pattern.
Mucosal damage to the vagina can result in severe pain and scarring, and appears in both acute and chronic GvHD. This can result in an inability to have sexual intercourse.
Acute GvHD is staged as follows: overall grade (skin-liver-gut) with each organ staged individually from a low of 1 to a high of 4. Patients with grade IV GvHD usually have a poor prognosis. If the GvHD is severe and requires intense immunosuppression involving steroids and additional agents to get under control, the patient may develop severe infections as a result of the immunosuppression and may die of infection.
In the oral cavity, chronic graft-versus-host-disease manifests as lichen planus with a higher risk of malignant transformation to oral squamous cell carcinoma in comparison to the classical oral lichen planus. Graft-versus-host-disease-associated oral cancer may have more aggressive behavior with poorer prognosis, when compared to oral cancer in non-hematopoietic stem cell transplantation patients.
Vogt–Koyanagi–Harada disease (VKH), also known as Vogt–Koyanagi–Harada syndrome, uveomeningitis syndrome and uveomeningoencephalitic syndrome, is a multisystem disease of presumed autoimmune cause, that affects pigmented tissues, which have melanin. The most significant manifestation is bilateral, diffuse uveitis, which affects the eye. VKH may variably also involve the inner ear with effects on hearing, the skin, and the meninges of the central nervous system.