Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Surface dyslexia is a type of dyslexia, or reading disorder. According to Marshall & Newcombe's (1973) and McCarthy & Warrington's study (1990), patients with this kind of disorder cannot recognize a word as a whole due to the damage of the left parietal or temporal lobe. Individuals with surface dyslexia are unable to recognize a word as a whole word and retrieve its pronunciation from memory. Rather, individuals with surface dyslexia rely on pronunciation rules. Thus, patients with this particular type of reading disorder read non-words fluently, like "yatchet", but struggle with words that defy pronunciation rules (i.e. exception words). For example, a patient with surface dyslexia can correctly read regular words like "mint", but will err when presented a word that disobeys typical pronunciation rules, like "pint". Often, semantic knowledge is preserved in individuals with surface dyslexia.
Deep dyslexia is usually classified as an "acquired reading disorder", as opposed to a "developmental dyslexia", in previously literate adults as a consequence of a brain injury. However, recently, developmental deep dyslexia has also been reported in children with Williams syndrome.
Deep dyslexia is considered to be a "central dyslexia" as compared to a "peripheral dyslexia". Peripheral dyslexics have difficulty matching the visual characteristics of letters that comprise a word to a stored memory of this word from prior encounters. Central dyslexics are unable to properly match the visual word to the word's meaning. They may also be incapable of speaking, or phonating, the sequence of written letters that they see into the word these letters represent. Deep dyslexia differs from other forms of central dyslexia (phonological dyslexia and surface dyslexia) in that deep dyslexics have many more symptoms and these symptoms are generally more severe. According to the "continuum" hypothesis, deep dyslexia is a more severe form of phonological dyslexia.
Deep dyslexia is a form of dyslexia that disrupts reading processes. Deep dyslexia may occur as a result of a head injury, stroke, disease, or operation. This injury results in the occurrence of semantic errors during reading and the impairment of nonword reading.
The term dyslexia comes from the Greek words 'dys' meaning 'impaired', and 'lexis' meaning 'word' and is used to describe disorders of language concerning reading and spelling.
Numerous models and hypotheses have been proposed in attempt to explain the broad range of symptoms experienced by deep dyslexics, but a definite consensus has yet to be reached. The proposed models and hypotheses have helped in treatment of some suffering patients, but only with certain specific symptoms. Additionally, the recovery seen is not experienced equally in all patients.
Phonological dyslexia is a reading disability that is a form of alexia (acquired dyslexia), resulting from brain injury, stroke, or progressive illness and that affects previously acquired reading abilities. The major distinguishing symptom of acquired phonological dyslexia is that a selective impairment of the ability to read pronounceable non-words occurs although the ability to read familiar words is not affected. It has also been found that the ability to read non-words can be improved if the non-words belong to a family of pseudohomophones.
Central dyslexias include surface dyslexia, semantic dyslexia, phonological dyslexia, and deep dyslexia. ICD-10 reclassified the previous distinction between dyslexia (315.02 in ICD-9) and alexia (315.01 in ICD-9) into a single classification as R48.0. The terms are applied to developmental dyslexia and inherited dyslexia along with developmental aphasia and inherited alexia, which are considered synonymous.
In surface dyslexia, words with regular pronunciations (highly consistent with their spelling, e.g. "mint") are read more accurately than words with irregular pronunciation, such as "colonel". Difficulty distinguishing homophones is a diagnostic used for some forms of surface dyslexia. This disorder is usually accompanied by surface agraphia and fluent aphasia. Acquired surface dyslexia arises when a previously literate person experiences brain damage, which results in pronunciation errors that indicate impairment of the lexical route.
Dysgraphia is nearly always accompanied by other learning differences such as dyslexia or attention deficit disorder, and this can impact the type of dysgraphia a person might have. There are three principal subtypes of dysgraphia that are recognized. There is little information available about different types of dysgraphia and there are likely more subtypes than the ones listed below. Some children may have a combination of two or more of these, and individual symptoms may vary in presentation from what is described here. Most common presentation is a motor dysgraphia/agraphia resulting from damage to some part of the motor cortex in the parietal lobes.
Pure alexia results from cerebral lesions in circumscribed brain regions and therefore belongs to the group of acquired reading disorders, alexia, as opposed to developmental dyslexia found in children who have difficulties in learning to read.
People with dyslexic dysgraphia have illegible spontaneously written work. Their copied work is fairly good, but their spelling is usually poor. Their finger tapping speed (a method for identifying fine motor problems) is normal, indicating that the deficit does not likely stem from cerebellar damage.
Pure alexia, also known as agnosic alexia or alexia without agraphia or pure word blindness, is one form of alexia which makes up "the peripheral dyslexia" group. Individuals who have pure alexia suffer from severe reading problems while other language-related skills such as naming, oral repetition, auditory comprehension or writing are typically intact.
Pure alexia is also known as: "alexia without agraphia", "letter-by-letter dyslexia", "spelling dyslexia", or "word-form dyslexia". Another name for it is "Dejerine syndrome", after Joseph Jules Dejerine, who described it in 1892; however, when using this name, it should not be confused with medial medullary syndrome which shares the same eponym.
A reading disability is a condition in which a sufferer displays difficulty reading resulting primarily from neurological factors. Developmental Dyslexia, Alexia (acquired dyslexia), and Hyperlexia (word-reading ability well above normal for age and IQ).
National Institute of Neurological Disorders and Stroke defines reading disability or dyslexia as follows: "Dyslexia is a brain-based type of learning disability that specifically impairs a person's ability to read. These individuals typically read at levels significantly lower than expected despite having normal intelligence. Although the disorder varies from person to person, common characteristics among people with dyslexia are difficulty with spelling, phonological processing (the manipulation of sounds), and/or rapid visual-verbal responding. In adults, dyslexia usually occurs after a brain injury or in the context of dementia. It can also be inherited in some families, and recent studies have identified a number of genes that may predispose an individual to developing dyslexia."
The NINDS definition is not in keeping with the bulk of scientific studies that conclude that there is no evidence to suggest that dyslexia and intelligence are related. The Rose Review 2009 Definition is more in keeping with modern research and debunked discrepancy model of dyslexia diagnosis:
- Dyslexia is a learning difficulty that primarily affects the skills involved in accurate and fluent word reading and spelling.
- Characteristic features of dyslexia are difficulties in phonological awareness, verbal memory and verbal processing speed.
- Dyslexia occurs across the range of intellectual abilities.
- It is best thought of as a continuum, not a distinct category, and there are no clear cut-off points.
- Co-occurring difficulties may be seen in aspects of language, motor co-ordination, mental calculation, concentration and personal organisation, but these are not, by themselves, markers of dyslexia.
- A good indication of the severity and persistence of dyslexic difficulties can be gained by examining how the individual responds or has responded to well founded intervention.
The word hyperlexia is derived from the Greek terms "hyper" ("over") and "léxis" ("diction", "word").
Language-based learning disabilities or LBLD are "heterogeneous" neurological differences that can affect skills such as listening, reasoning, speaking, reading, writing, and maths calculations. It is also associated with movement, coordination, and direct attention. LBLD is not usually identified until the child reaches school age. Most people with this disability find it hard to communicate, to express ideas efficiently and what they say may be ambiguous and hard to understand
It is a neurological difference. It is often hereditary, and is frequently associated to specific language problems.
There are two types of learning disabilities: non-verbal, which includes disabilities from psychomotor difficulties to dyscalculia, and verbal, language based.
Semantic dyslexia is, as the name suggests, a subtype of the group of cognitive disorders known as alexia (acquired dyslexia). Those who suffer from semantic dyslexia are unable to properly attach words to their meanings in reading and/or speech. When confronted with the word "diamond", they may understand it as "sapphire", "shiny" or "diamonds"; when asking for a bus ticket, they may ask for some paper or simply "a thing".
Semantic dementia (SD) is a degenerative disease characterized by atrophy of anterior temporal regions (the primary auditory cortex; process auditory information) and progressive loss of semantic memory. SD patients often present with surface dyslexia, a relatively selective impairment in reading low-frequency words with exceptional or atypical spelling-to-sound correspondences.
Although hyperlexic children usually learn to read in a non-communicative way, several studies have shown that they can acquire reading comprehension and communicative language after the onset of hyperlexia. They follow a different developmental trajectory relative to neurotypical individuals, with milestones being acquired in a different order. Despite hyperlexic children's precocious reading ability, they may struggle to communicate. Often, hyperlexic children will have a precocious ability to read but will learn to speak only by rote and heavy repetition, and may also have difficulty learning the rules of language from examples or from trial and error, which may result in social problems. Their language may develop using echolalia, often repeating words and sentences. Often, the child has a large vocabulary and can identify many objects and pictures, but cannot put their language skills to good use. Spontaneous language is lacking and their pragmatic speech is delayed. Hyperlexic children often struggle with Who? What? Where? Why? and How? questions. Between the ages of 4 and 5 years old, many children make great strides in communicating.
The social skills of a child with hyperlexia often lag tremendously. Hyperlexic children often have far less interest in playing with other children than do their peers.
There are two general classifications of amusia: congenital amusia and acquired amusia.
Research on subtypes of dyscalculia has begun without consensus; preliminary research has focused on comorbid learning disorders as subtyping candidates. The most common comorbidity in individuals with dyscalculia is dyslexia. Most studies done with comorbid samples versus dyscalculic-only samples have shown different mechanisms at work and additive effects of comorbidity, indicating that such subtyping may not be helpful in diagnosing dyscalculia. But there is variability in results at present.
Due to high comorbidity with other disabilities such as dyslexia and ADHD, some researchers have suggested the possibility of subtypes of mathematical disabilities with different underlying profiles and causes. Whether a particular subtype is specifically termed "dyscalculia" as opposed to a more general mathematical learning disability is somewhat under debate in the scientific literature.
- Semantic memory: This subtype often coexists with reading disabilities such as dyslexia and is characterized by poor representation and retrieval from long-term memory. These processes share a common neural pathway in the left angular gyrus, which has been shown to be selective in arithmetic fact retrieval strategies and symbolic magnitude judgments. This region also shows low functional connectivity with language-related areas during phonological processing in adults with dyslexia. Thus, disruption to the left angular gyrus can cause both reading impairments and difficulties in calculation. This has been observed in individuals with Gerstmann syndrome, of which dyscalculia is one of constellation of symptoms.
- Procedural concepts: Research by Geary has shown that in addition to increased problems with fact retrieval, children with math disabilities may rely on immature computational strategies. Specifically, children with mathematical disabilities showed poor command of counting strategies unrelated to their ability to retrieve numeric facts. This research notes that it is difficult to discern whether poor conceptual knowledge is indicative of a qualitative deficit in number processing or simply a delay in typical mathematical development.
- Working memory: Studies have found that children with dyscalculia showed impaired performance on working memory tasks compared to neurotypical children. Furthermore, research has shown that children with dyscalculia have weaker activation of the intraparietal sulcus during visuospatial working memory tasks. Brain activity in this region during such tasks has been linked to overall arithmetic performance, indicating that numerical and working memory functions may converge in the intraparietal sulcus. However, working memory problems are confounded with domain-general learning difficulties, thus these deficits may not be specific to dyscalculia but rather may reflect a greater learning deficit. Dysfunction in prefrontal regions may also lead to deficits in working memory and other executive function, accounting for comorbidity with ADHD.
Studies have also shown indications of causes due to congenital or hereditary disorders, but evidence of this is not yet concrete.
Visual agnosia is a broad category that refers to a deficiency in the ability to recognize visual objects. Visual agnosia can be further subdivided into two different subtypes: apperceptive visual agnosia and associative visual agnosia.
Individuals with apperceptive visual agnosia display the ability to see contours and outlines when shown an object, but they experience difficulty if asked to categorize objects. Apperceptive visual agnosia is associated with damage to one hemisphere, specifically damage to the posterior sections of the right hemisphere.
In contrast, individuals with associative visual agnosia experience difficulty when asked to name objects. Associative agnosia is associated with damage to both the right and left hemispheres at the occipitotemporal border. A specific form of associative visual agnosia is known as prosopagnosia. Prosopagnosia is the inability to recognize faces. For example, these individuals have difficulty recognizing friends, family and coworkers. However, individuals with prosopagnosia can recognize all other types of visual stimuli.
LBLD consists of dyscalculia which comprises the reading of numbers sequentially, learning the time table, and telling time;
dyslexia; and difficulties associated with written language such as trouble learning new vocabulary, letters and alphabets. Auditory processing disorders can cause trouble understanding questions and following directions, understanding and remembering the details of a story's plot or a classroom lecture, learning words to songs and rhymes, telling left from right, and having a hard time with reading and writing .
Difficulties associated with reading and spoken language involve trouble understanding questions and following directions, understanding and retaining the details of a story's plot or a classroom lecture, nonword repetition, learning words to songs and rhymes, and identifying the sounds that correspond to letters, which makes learning to read difficult
Difficulties associated with motor skills include difficulty telling left from right which is part of motor incoordination, visual perceptual problems, and memory problem
Speech agnosia, or auditory verbal agnosia, refers to "an inability to comprehend spoken words despite intact hearing, speech production and reading ability". Patients report that they do indeed hear sounds being produced, but that the sounds are fundamentally unrecognizable/untranslatable.
1. EXAMINER: What did you eat for breakfast?
2. PATIENT: Breakfast, breakfast, it sounds familiar but it doesn't speak to me. (Obler & Gjerlow 1999:45)
Despite an inability to process what the speaker is saying, some patients have been reported to recognize certain characteristic information about the speaker's voice (such as being a man or woman).
At its most basic level, dyscalculia is a learning disability affecting the normal development of arithmetic skills.
A consensus has not yet been reached on appropriate diagnostic criteria for dyscalculia. Mathematics is a specific domain that is complex (i.e. includes many different processes, such as arithmetic, algebra, word problems, geometry, etc.) and cumulative (i.e. the processes build on each other such that mastery of an advanced skill requires mastery of many basic skills). Thus dyscalculia can be diagnosed using different criteria, and frequently is; this variety in diagnostic criteria leads to variability in identified samples, and thus variability in research findings regarding dyscalculia.
Other than using achievement tests as diagnostic criteria, researchers often rely on domain-specific tests (i.e. tests of working memory, executive function, inhibition, intelligence, etc.) and teacher evaluations to create a more comprehensive diagnosis. Alternatively, fMRI research has shown that the brains of the neurotypical children can be reliably distinguished from the brains of the dyscalculic children based on the activation in the prefrontal cortex. However, due to the cost and time limitations associated with brain and neural research, these methods will likely not be incorporated into diagnostic criteria despite their effectiveness.
Individuals who suffer from phonological dyslexia have the opposite problem to surface dyslexics. These individuals are able to read using the whole word method. However, they struggle when it comes to sounding words out. Phonological dyslexics are able to read familiar words, but have difficulties when it comes to unfamiliar words or non-words that are pronounceable. Several studies have found that many phonological dyslexics have a good reading ability if the individual has developed a large vocabulary prior to suffering from brain damage. These individuals seem to stop developing their vocabulary post-brain damage, which affects their reading capacity.
Phonological dyslexia is a reading disorder in which the patient has impaired reading of nonwords. The symptoms of phonological dyslexia are very similar to those of deep dyslexia. The major difference between these two dyslexias is that phonological dyslexics do not make semantic errors associated with deep dyslexia. Beauvois and Dérouesné (1979) studied the first case of phonological dyslexia and came up with this term. The problem people with phonological dyslexia have is that they are able to read words using the whole word method; however, they are not able to sound words out. This means that they are able to read familiar words, but have difficulties reading new words.
Initially it was believed that the factor causing phonological dyslexia was lexicality; however, other factors such as imageability and concreteness also play a critical role in reading. A study done by Crisp and Lambon Ralph concluded that imageability has a significant effect on phonological dyslexia. The study found that eleven out of the twelve patients had more accuracy when reading words with high imageability. In that study, the patient who was the exception was the least severely damaged, contributing to a view of phonological dyslexia and deep dyslexia as points on a continuum rather than discrete disorders.
The National Institute on Deafness and Other Communication Disorders state that children with Auditory Processing Disorder often:
- have trouble paying attention to and remembering information presented orally, and may cope better with visually acquired information
- have problems carrying out multi-step directions given orally; need to hear only one direction at a time
- have poor listening skills
- need more time to process information
- have low academic performance
- have behavior problems
- have language difficulties (e.g., they confuse syllable sequences and have problems developing vocabulary and understanding language)
- have difficulty with reading, comprehension, spelling, and vocabulary
APD can manifest as problems determining the direction of sounds, difficulty perceiving differences between speech sounds and the sequencing of these sounds into meaningful words, confusing similar sounds such as "hat" with "bat", "there" with "where", etc. Fewer words may be perceived than were actually said, as there can be problems detecting the gaps between words, creating the sense that someone is speaking unfamiliar or nonsense words. In addition, it is common for APD to cause speech errors involving the distortion and substitution of consonant sounds. Those suffering from APD may have problems relating what has been said with its meaning, despite obvious recognition that a word has been said, as well as repetition of the word. Background noise, such as the sound of a radio, television or a noisy bar can make it difficult to impossible to understand speech, since spoken words may sound distorted either into irrelevant words or words that don't exist, depending on the severity of the auditory processing disorder. Using a telephone can be problematic for someone with auditory processing disorder, in comparison with someone with normal auditory processing, due to low quality audio, poor signal, intermittent sounds and the chopping of words. Many who have auditory processing disorder subconsciously develop visual coping strategies, such as lip reading, reading body language, and eye contact, to compensate for their auditory deficit, and these coping strategies are not available when using a telephone.
As noted above, the status of APD as a distinct disorder has been queried, especially by speech-language pathologists and psychologists, who note the overlap between clinical profiles of children diagnosed with APD and those with other forms of specific learning disability. Many audiologists, however, would dispute that APD is just an alternative label for dyslexia, SLI, or ADHD, noting that although it often co-occurs with these conditions, it can be found in isolation.
The diagnosis of amusia requires individuals to detect out-of-key notes in conventional but unfamiliar melodies. A behavioral failure on this test is diagnostic because there is typically no overlap between the distributions of the scores of amusics and controls. Such scores are generally obtained through the Montreal Battery of Evaluation of Amusia (MBEA), which involves a series of tests that evaluate the use of musical characteristics known to contribute to the memory and perception of conventional music. The battery comprises six subtests which assess the ability to discriminate pitch contour, musical scales, pitch intervals, rhythm, meter, and memory. An individual is considered amusic if he/she performs two standard deviations below the mean obtained by musically-competent controls. This musical pitch disorder represents a phenotype that serves to identify the associated neuro-genetic factors. Both MRI-based brain structural analyses and electroencephalography (EEG) are common methods employed to uncover brain anomalies associated with amusia (See Neuroanatomy). Additionally, voxel-based morphometry (VBM) is used to detect anatomical differences between the MRIs of amusic brains and musically intact brains, specifically with respect increased and/or decreased amounts of white and grey matter.