Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
After the active portion of a seizure, there is typically a period of confusion called the "postictal period" before a normal level of consciousness returns. This usually lasts 3 to 15 minutes but may last for hours. Other common symptoms include: feeling tired, headache, difficulty speaking, and abnormal behavior. Psychosis after a seizure is relatively common, occurring in between 6 and 10% of people. Often people do not remember what occurred during this time.
A seizure can last from a few seconds to more than five minutes, at which point it is known as status epilepticus. Most tonic-clonic seizures last less than two or three minutes. Absence seizures are usually around 10 seconds in duration.
The most common type (60%) of seizures are convulsive. Of these, one-third begin as generalized seizures from the start, affecting both hemispheres of the brain. Two-thirds begin as focal seizures (which affect one hemisphere of the brain) which may then progress to generalized seizures. The remaining 40% of seizures are non-convulsive. An example of this type is the absence seizure, which presents as a decreased level of consciousness and usually lasts about 10 seconds.
Focal seizures are often preceded by certain experiences, known as auras. They include sensory (visual, hearing, or smell), psychic, autonomic, and motor phenomena. Jerking activity may start in a specific muscle group and spread to surrounding muscle groups in which case it is known as a Jacksonian march. Automatisms may occur, which are non-consciously-generated activities and mostly simple repetitive movements like smacking of the lips or more complex activities such as attempts to pick up something.
There are six main types of generalized seizures: tonic-clonic, tonic, clonic, myoclonic, absence, and atonic seizures. They all involve loss of consciousness and typically happen without warning.
Tonic-clonic seizures occur with a contraction of the limbs followed by their extension along with arching of the back which lasts 10–30 seconds (the tonic phase). A cry may be heard due to contraction of the chest muscles, followed by a shaking of the limbs in unison (clonic phase). Tonic seizures produce constant contractions of the muscles. A person often turns blue as breathing is stopped. In clonic seizures there is shaking of the limbs in unison. After the shaking has stopped it may take 10–30 minutes for the person to return to normal; this period is called the "postictal state" or "postictal phase." Loss of bowel or bladder control may occur during a seizure. The tongue may be bitten at either the tip or on the sides during a seizure. In tonic-clonic seizure, bites to the sides are more common. Tongue bites are also relatively common in psychogenic non-epileptic seizures.
Myoclonic seizures involve spasms of muscles in either a few areas or all over. Absence seizures can be subtle with only a slight turn of the head or eye blinking. The person does not fall over and returns to normal right after it ends. Atonic seizures involve the loss of muscle activity for greater than one second. This typically occurs on both sides of the body.
About 6% of those with epilepsy have seizures that are often triggered by specific events and are known as reflex seizures. Those with reflex epilepsy have seizures that are only triggered by specific stimuli. Common triggers include flashing lights and sudden noises. In certain types of epilepsy, seizures happen more often during sleep, and in other types they occur almost only when sleeping.
After the active portion of a seizure (the ictal state) there is typically a period of recovery during which there is confusion, referred to as the postictal period before a normal level of consciousness returns. It usually lasts 3 to 15 minutes but may last for hours. Other common symptoms include feeling tired, headache, difficulty speaking, and abnormal behavior. Psychosis after a seizure is relatively common, occurring in 6–10% of people. Often people do not remember what happened during this time. Localized weakness, known as Todd's paralysis, may also occur after a focal seizure. When it occurs it typically lasts for seconds to minutes but may rarely last for a day or two.
Frontal lobe epilepsy, usually a symptomatic or cryptogenic localization-related epilepsy, arises from lesions causing seizures that occur in the frontal lobes of the brain. These epilepsies can be difficult to diagnose because the symptoms of seizures can easily be confused with nonepileptic spells and, because of limitations of the EEG, be difficult to "see" with standard scalp EEG.
Juvenile absence epilepsy is an idiopathic generalized epilepsy with later onset than CAE, typically in prepubertal adolescence, with the most frequent seizure type being absence seizures. Generalized tonic-clonic seizures can occur. Often, 3 Hz spike-wave or multiple spike discharges can be seen on EEG. The prognosis is mixed, with some patients going on to a syndrome that is poorly distinguishable from JME.
Juvenile myoclonic epilepsy (JME) is an idiopathic generalized epilepsy that occurs in patients aged 8 to 20 years. Patients have normal cognition and are otherwise neurologically intact. The most common seizure is myoclonic jerks, although generalized tonic-clonic seizures and absence seizures may occur as well. Myoclonic jerks usually cluster in the early morning after awakening. The EEG reveals generalized 4–6 Hz spike wave discharges or multiple spike discharges. These patients are often first diagnosed when they have their first generalized tonic-clonic seizure later in life, when they experience sleep deprivation (e.g., freshman year in college after staying up late to study for exams). Alcohol withdrawal can also be a major contributing factor in breakthrough seizures, as well. The risk of the tendency to have seizures is lifelong; however, the majority have well-controlled seizures with anticonvulsant medication and avoidance of seizure precipitants.
Tonic–clonic Seizures with repetitive sequences of stiffening and jerking of the extremities.
Myoclonic Seizures with rapid, brief contractions of muscles.
Atonic Seizures with a sudden loss of muscle tone, often resulting in sudden collapse. These are also called drop seizures.
Absence A generalized seizure characterized by staring off and occasionally some orofacial automatisms.
Myoclonic astatic Seizures that involve a myoclonic seizure followed immediately by an atonic seizure. This type of seizure is exclusive to MAE and is one of the defining characteristics of this syndrome.
Tonic Muscle stiffening or rigidity. This seizure is rare in this syndrome.
The clinical manifestations of absence seizures vary significantly among patients. Impairment of consciousness is the essential symptom, and may be the only clinical symptom, but this can be combined with other manifestations. The hallmark of the absence seizures is abrupt and sudden-onset impairment of consciousness, interruption of ongoing activities, a blank stare, possibly a brief upward rotation of the eyes. If the patient is speaking, speech is slowed or interrupted; if walking, they stand transfixed; if eating, the food will stop on its way to the mouth. Usually, the patient will be unresponsive when addressed. In some cases, attacks are aborted when the patient is called. The attack lasts from a few seconds to half a minute, and evaporates as rapidly as it commenced. Absence seizures generally are not followed by a period of disorientation or lethargy (post-ictal state), in contrast to the majority of seizure disorders.
1. Absence with impairment of consciousness only as per the above description.
2. Absence with mild clonic components. Here the onset of the attack is indistinguishable from the above, but clonic components may occur in the eyelids, at the corner of the mouth, or in other muscle groups which may vary in severity from almost imperceptible movements to generalised myoclonic jerks. Objects held in the hand may be dropped.
3. Absence with atonic components. Here there may be a diminution in tone of muscles subserving posture as well as in the limbs leading to dropping of the head, occasionally slumping of the trunk, dropping of the arms, and relaxation of the grip. Rarely tone is sufficiently diminished to cause this person to fall.
4. Absence with tonic components. Here during the attack tonic muscular contraction may occur, leading to increase in muscle tone which may affect the extensor muscles or the flexor muscles symmetrically or asymmetrically. If the patient is standing, the head may be drawn backward and the trunk may arch. This may lead to retropulsion, which may cause eyelids to twitch rapidly, eyes may jerk upwards or the patients head may rock back and forth slowly, as if nodding. The head may tonically draw to one or another side.
5. Absence with automatisms. Purposeful or quasipurposeful movements occurring in the absence of awareness during an absence attack are frequent and may range from lip licking and swallowing to clothes fumbling or aimless walking. If spoken to, the patient may grunt, and when touched or tickled may rub the site. Automatisms are quite elaborate and may consist of combinations of the above described movements or may be so simple as to be missed by casual observation.
6. Absence with autonomic components. These may be pallor, and less frequently flushing, sweating, dilatation of pupils and incontinence of urine.
Mixed forms of absence frequently occur.
These seizures can happen a few times a day or in some cases hundreds of times a day, to the point that the person cannot concentrate in school or in other situations requiring sustained, concentrated attention.
Sudden unexpected death in epilepsy (SUDEP) is a fatal complication of epilepsy. It is defined as the sudden and unexpected, non-traumatic and non-drowning death of a person with epilepsy, without a toxicological or anatomical cause of death detected during the post-mortem examination.
While the mechanisms underlying SUDEP are still poorly understood, it is possibly the most common cause of death as a result of complications from epilepsy, accounting for between 7.5 and 17% of all epilepsy-related deaths and 50% of all deaths in refractory epilepsy. The causes of SUDEP seem to be multifactorial and include respiratory, cardiac and cerebral factors, as well as the severity of epilepsy and seizures. Proposed pathophysiological mechanisms include seizure-induced cardiac and respiratory arrests.
SUDEP occurs in about 1 in 1,000 adults and 1 in 4,500 children with epilepsy a year. Rates of death as a result of prolonged seizures (status epilepticus) are not classified as SUDEP.
The onset of seizures is between the ages of 2 and 5. EEG shows regular and irregular bilaterally synchronous 2- to 3-Hz spike-waves and polyspike patterns with a 4- to 7-Hz background. 84% of affected children show normal development prior to seizures; the remainder show moderate psychomotor retardation mainly affecting speech. Boys (74%) are more often affected than girls (Doose and Baier 1987a).
These syndromes are childhood absence epilepsy, epilepsy with myoclonic absences, juvenile absence epilepsy and juvenile myoclonic epilepsy. Other proposed syndromes are Jeavons syndrome (eyelid myoclonia with absences), and genetic generalised epilepsy with phantom absences.
These types of seizures are also known to occur to patients suffering with porphyria and can be triggered by stress or other porphyrin-inducing factors.
Myoclonic jerks that are not epileptic may be due to a nervous system disorder or other metabolic abnormalities that may arise in renal (e.g. hyperuraemia) and liver failure (e.g. high ammonia states).
The condition may be difficult to diagnose. The subject may be unaware they have a seizure disorder. To others, the involuntary movements made during sleep may appear no different from those typical of normal sleep.People who have nocturnal seizures may notice unusual conditions upon awakening in the morning, such as a headache, having wet the bed, having bitten the tongue, a bone or joint injury, muscle strains or weakness, fatigue, or lightheadedness. Others may notice unusual mental behaviors consistent with the aftermath of a seizure. Objects near the bed may have been knocked to the floor, or the subject may be surprised to find themselves on the floor.
There are many risks associated with nocturnal seizures including concussion, suffocation and sudden unexpected death (SUDEP).
Myoclonus can be described as brief jerks of the body; it can involve any part of the body, but it is mostly seen in limbs or facial muscles. The jerks are usually involuntary and can lead to falls. EEG is used to read brain wave activity. Spike activity produced from the brain is usually correlated with brief jerks seen on EMG or excessive muscle artifact. They usually occur without detectable loss of consciousness and may be generalized, regional or focal on the EEG tracing. Myclonus jerks can be epileptic or not epileptic. Epileptic myoclonus is an elementary electroclinical manifestation of epilepsy involving descending neurons, whose spatial (spread) or temporal (self-sustained repetition) amplification can trigger overt epileptic activity.
The International League Against Epilepsy (ILAE) define an epileptic seizure as "a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain." Epileptic seizures can occur in someone who does not have epilepsy – as a consequence of head injury, drug overdose, toxins, eclampsia or febrile convulsions, for example.
Medically, when used on its own, the term seizure implies an epileptic seizure. The lay use of this word can also include sudden attacks of illness, loss of control, spasm or stroke. Where the physician is uncertain as to the diagnosis, the medical term paroxysmal event and the lay terms spells, funny turns or attacks may be used.
Possible causes include:
- Syncope (fainting)
- Reflex anoxic seizures
- Breath-holding spells of childhood
- Hypoglycaemia
- Cataplexy
- Hyperekplexia, also called startle syndrome
- Migraine
- Narcolepsy
- Non-epileptic myoclonus
- Opsoclonus
- Parasomnias, including night terrors
- Paroxysmal kinesigenic dyskinesia
- Repetitive or ritualistic behaviours
- Tics
- AADC Deficiency
Seizures are purely occipital and primarily manifest with elementary visual hallucinations, blindness or both.
They are usually frequent and diurnal, develop rapidly within seconds and are brief, lasting from a few seconds to 1–3 min, and, rarely, longer.
Elementary visual hallucinations are the most common and characteristic ictal symptoms, and are most likely to be the first and often the only clinical manifestation. They consist mainly of small multicoloured circular patterns that often appear in the periphery of a visual field, becoming larger and multiplying during the course of the seizure, frequently moving horizontally towards the other side.
Other occipital symptoms, such as sensory illusions of ocular movements and ocular pain, tonic deviation of the eyes, eyelid fluttering or repetitive eye closures, may occur at the onset of the seizures or appear after the elementary visual hallucinations. "Deviation of the eyes", often associated with ipsilateral turning of the head, is the most common (in about 70% of cases) nonvisual ictal symptom. It is often associated with ipsilateral turning of the head and usually starts after visual hallucinations, although it may also occur while the hallucinations still persist. It may be mild, but more often it is severe and progresses to hemiconvulsions and secondarily generalised tonic clonic seizures (GTCS). Some children may have seizures of eye deviation from the start without visual hallucinations.
"Forced eyelid closure and eyelid blinking" occur in about 10% of patients, usually at a stage at which consciousness is impaired. They signal an impending secondarily GTCS.
"Ictal blindness", appearing from the start or, less commonly, after other manifestations of occipital seizures, usually lasts for 3–5 min. It can occur alone and be the only ictal event in patients who could, at other times, have visual hallucinations without blindness.
Complex visual hallucinations, visual illusions and other symptoms resulting from more anterior ictal spreading rarely occur from the start. They may terminate in hemiconvulsions or generalised convulsions.
Ictal headache, or mainly orbital pain, may occur and often precedes visual or other ictal occipital symptoms in a small number of patients.
Consciousness is not impaired during the visual symptoms (simple focal seizures), but may be disturbed or lost in the course of the seizure, usually before eye deviation or convulsions.
Occipital seizures of ICOE-G may rarely progress to extra-occipital manifestations, such as hemiparaesthesia. Spread to produce symptoms of temporal lobe involvement is exceptional and may indicate a symptomatic cause.
Post-ictal headache, mainly diffuse, but also severe, unilateral and pulsating, or indistinguishable from migraine headache, occurs in half the patients, in 10% of whom it may be associated with nausea and vomiting.
Circadian distribution: Visual seizures are predominantly diurnal and can occur at any time of the day. Longer seizures, with or without hemi or generalised convulsions, tend to occur either during sleep, causing the patient to wake up, or after awakening. Thus, some children may have numerous diurnal visual seizures and only a few seizures that are exclusively nocturnal or occur on awakening.
Frequency of seizures: If untreated, patients experience frequent and brief visual seizures (often several every day or weekly). However, propagation to other seizure manifestations, such as focal or generalised convulsions, is much less frequent.
A person who suffers from epilepsy regardless of whether it is nocturnal or not, can be categorized into two different types of epilepsy either being generalized, or partial. A generalized epilepsy syndrome is associated with an overall hyperactivity in the brain, where electrical discharges occur all over the brain at once; this syndrome often has a genetic basis. While generalized epilepsy occurs all over the brain, partial epilepsy consists of a regional or localized hyperactivity, which means that the seizures occur conversely in one part of the brain or several parts at once.
"Focal aware" means that the level of consciousness is not altered during the seizure. In temporal lobe epilepsy, a focal seizure usually causes abnormal sensations only.
These may be:
- Sensations such as déjà vu (a feeling of familiarity), jamais vu (a feeling of unfamiliarity)
- Amnesia; or a single memory or set of memories
- A sudden sense of unprovoked fear and anxiety
- Nausea
- Auditory, visual, olfactory, gustatory, or tactile hallucinations.
- Visual distortions such as macropsia and micropsia
- Dissociation or derealisation
- Synesthesia (stimulation of one sense experienced in a second sense) may transpire.
- Dysphoric or euphoric feelings, fear, anger, and other emotions may also occur. Often, the patient cannot describe the sensations.
Olfactory hallucinations often seem indescribable to patients beyond "pleasant" or "unpleasant".
Focal aware seizures are often called "auras" when they serve as a warning sign of a subsequent seizure. Regardless an "aura" is actually a seizure itself, and such a focal seizure may or may not progress to a focal impaired awareness seizure. People who only experience focal aware seizures may not recognize what they are, nor seek medical care.
Signs of JME are brief episodes of involuntary muscle twitching occurring early in the morning or shortly before falling asleep. This does not usually result in the person falling, but rather dropping objects. These muscle twitching episodes are more common in the arms than in the legs. Other seizure types such as generalized tonic-clonic and absence seizures can also occur. Patients often report quick jerking movements in the morning that results in knocking over objects such as their morning orange juice. Clusters of myoclonic seizures can lead to absence seizures, and clusters of absence seizures can lead to generalized tonic-clonic seizures. The onset of symptoms is generally around age 10-16 although some patients can present in their 20s or even early 30s. The myoclonic jerks generally precede the generalized tonic-clonic seizures by several months. Some people with the disorder never get generalized tonic-clonic seizures (GTCs). Sleep deprivation is a major factor in triggering GTCs. College students often present with a GTC after "pulling an all-nighter." Patients with JME generally do not have other neurological problems.
The cardinal features of Rolandic epilepsy are infrequent, often single, focal seizures consisting of:
Hemifacial sensorimotor seizures are often entirely localised in the lower lip or spread to the ipsilateral hand. Motor manifestations are sudden, continuous or bursts of clonic contractions, usually lasting from a few seconds to a minute. Ipsilateral tonic deviation of the mouth is also common. Hemifacial sensory symptoms consist of unilateral numbness mainly in the corner of the mouth.
Hemifacial seizures are often associated with an inability to speak and hypersalivation:
"The left side of my mouth felt numb and started jerking and pulling to the left, and I could not speak to say what was happening to me."
Negative myoclonus can be observed in some cases, as an interruption of tonic muscular activity
Oropharyngolaryngeal ictal manifestations are unilateral sensorimotor symptoms inside the mouth. Numbness, and more commonly paraesthesias (tingling, prickling, freezing), are usually diffuse on one side or, exceptionally, may be highly localised even to one tooth. Motor oropharyngolaryngeal symptoms produce strange sounds, such as death rattle, gargling, grunting and guttural sounds, and combinations:
"In his sleep, he was making guttural noises, with his mouth pulled to the right, ‘as if he was chewing his tongue’". "We heard her making strange noises ‘like roaring’ and found her unresponsive, head raised from the pillow, eyes wide open, rivers of saliva coming out of her mouth, rigid."
Arrest of speech is a form of anarthria. The child is unable to utter a single intelligible word and attempts to communicate with gestures.
"My mouth opened and I could not speak. I wanted to say I cannot speak. At the same time, it was as if somebody was strangling me."
Hypersalivation , a prominent autonomic manifestation, is often associated with hemifacial seizures, oro-pharyngo-laryngeal symptoms and speech arrest. Hypersalivation is not just frothing:
"Suddenly my mouth is full of saliva, it runs out like a river and I cannot speak."
Syncope-like epileptic seizures may occur, probably as a concurrent symptom of Panayiotopoulos syndrome:
"She lies there, unconscious with no movements, no convulsions, like a wax work, no life."
Consciousness and recollection are fully retained in more than half (58%) of Rolandic seizures.
"I felt that air was forced into my mouth, I could not speak and I could not close my mouth. I could understand well everything said to me. Other times I feel that there is food in my mouth and there is also a lot of salivation. I cannot speak."
In the remainder (42%), consciousness becomes impaired during the ictal progress and in one third there is no recollection of ictal events.
Progression to hemiconvulsions or generalised tonic–clonic seizures occurs in around half of children and hemiconvulsions may be followed by postictal Todd’s hemiparesis .
Duration and circadian distribution: Rolandic seizures are usually brief, lasting for 1–3 min. Three quarters of seizures occur during nonrapid eye movement sleep, mainly at sleep onset or just before awakening.
Status epilepticus: Although rare, focal motor status or hemiconvulsive status epilepticus is more likely to occur than secondarily generalised convulsive status epilepticus, which is exceptional. Opercular status epilepticus usually occurs in children with atypical evolution or may be induced by carbamazepine or lamotrigine. This state lasts for hours to months and consists of ongoing unilateral or bilateral contractions of the mouth, tongue or eyelids, positive or negative subtle perioral or other myoclonus, dysarthria, speech arrest, difficulties in swallowing, buccofacial apraxia and hypersalivation. These are often associated with continuous spikes and waves on an EEG during NREM sleep.
Other seizure types: Despite prominent hypersalivation, focal seizures with primarily autonomic manifestations (autonomic seizures) are not considered part of the core clinical syndrome of Rolandic epilepsy. However, some children may present with independent autonomic seizures or seizures with mixed Rolandic-autonomic manifestations including emesis as in Panayiotopoulos syndrome.
Atypical forms: Rolandic epilepsy may present with atypical manifestations such early age at onset, developmental delay or learning difficulties at inclusion, other seizure types, atypical EEG abnormalities.
These children usually have normal intelligence and development. Learning can remain unimpaired while a child is afflicted with Rolandic epilepsy.
Dravet syndrome has been characterized by prolonged febrile and non-febrile seizures within the first year of a child’s life. This disease progresses to other seizure types like myoclonic and partial seizures, psychomotor delay, and ataxia. It is characterized by cognitive impairment, behavioral disorders, and motor deficits. Behavioral deficits often include hyperactivity and impulsiveness, and in more rare cases, autistic-like behaviors. Dravet syndrome is also associated with sleep disorders including somnolence and insomnia. The seizures experienced by people with Dravet syndrome become worse as the patient ages since the disease is not very predictable when first diagnosed. This coupled with the range of severity differing between each individual diagnosed and the resistance of these seizures to drugs has made it challenging to develop treatments.
Dravet syndrome appears during the first year of life, often beginning around six months of age with frequent febrile seizures (fever-related seizures). Children with Dravet syndrome typically experience a lagged development of language and motor skills, hyperactivity and sleep difficulties, chronic infection, growth and balance issues, and difficulty relating to others. The effects of this disorder do not diminish over time, and children diagnosed with Dravet syndrome require fully committed caretakers with tremendous patience and the ability to closely monitor them.
Febrile seizures are divided into two categories known as simple and complex. A febrile seizure would be categorized as complex if it has occurred within 24 hours of another seizure or if it lasts longer than 15 minutes. A febrile seizure lasting less than 15 minutes would be considered simple. Sometimes modest hyperthermic stressors like physical exertion or a hot bath can provoke seizures in affected individuals. However, any seizure uninterrupted after 5 minutes, without a resumption of postictal (more normal; recovery-type; after-seizure) consciousness can lead to potentially fatal status epilepticus.
The age of onset of seizures is typically between three and five, though onset can occur at an earlier or later age. The syndrome shows clear parallels to West syndrome, enough to suggest a connection.
Daily multiple seizures are typical in LGS. Also typical is the broad range of seizures that can occur, larger than that of any other epileptic syndrome. The most frequently occurring seizure type is tonic seizures, which are often nocturnal (90%); the second most frequent are myoclonic seizures, which often occur when the person is over-tired.
Atonic, atypical absence, tonic, complex partial, focalized and tonic–clonic seizures are also common. Additionally, about half of patients will have status epilepticus, usually the nonconvulsive type, which is characterized by dizziness, apathy, and unresponsiveness. The seizures can cause sudden falling (or spasms in tonic, atonic and myoclonic episodes) and/or loss of balance, which is why patients often wear a helmet to prevent head injury.
In addition to daily multiple seizures of various types, children with LGS frequently have arrested/slowed psycho-motor development and behavior disorders.
The syndrome is also characterized by an (between-seizures) EEG featuring slow spike-wave complexes.
Focal impaired awareness seizures are seizures which impair consciousness to some extent: they alter the person's ability to interact normally with their environment. They usually begin with a focal aware seizure, then spread to a larger portion of the temporal lobe, resulting in impaired consciousness. They may include autonomic and psychic features present in focal aware seizures.
Signs may include:
- Motionless staring
- Automatic movements of the hands or mouth
- Confusion and disorientation
- Altered ability to respond to others, unusual speech
- Transient aphasia (losing ability to speak, read, or comprehend spoken word)
These seizures tend to have a warning or aura before they occur, and when they occur they generally tend to last only 1–2 minutes. It is not uncommon for an individual to be tired or confused for up to 15 minutes after a seizure has occurred, although postictal confusion can last for hours or even days. Though they may not seem harmful, due to the fact that the individual does not normally seize, they can be extremely harmful if the individual is left alone around dangerous objects. For example, if a person with complex partial seizures is driving alone, this can cause them to run into the ditch, or worse, cause an accident involving multiple people. With this type, some people do not even realize they are having a seizure and most of the time their memory from right before or after the seizure is wiped. First-aid is only required if there has been an injury or if this is the first time a person has had a seizure.
There are various reflex epilepsies, including:
- Photosensitive epilepsy
- Eating epilepsy
- Reading epilepsy
- Hot water epilepsy
- Music induced seizures
Generalised seizures, particularly myoclonic and tonic-clonic, are the most common type of reflex seizures, though other types of seizures may occur.