Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This condition is a skeletal dysplasia characterized by short stature, mild brachydactyly, kyphoscoliosis, abnormal gait, enlarged knee joints, precocious osteoarthropathy, platyspondyly, delayed epiphyseal ossification, mild metaphyseal abnormalities, short stature and short and bowed legs. Intelligence is normal.
Some patients may manifest premature pubarche and hyperandrogenism.
Other features that may form part of the syndrome include precocious costal calcification, small iliac bones, short femoral necks, coxa vara, short halluces and fused vertebral bodies.
People with spondyloepiphyseal dysplasia are short-statured from birth, with a very short trunk and neck and shortened limbs. Their hands and feet, however, are usually average-sized. This type of dwarfism is characterized by a normal spinal column length relative to the femur bone. Adult height ranges from 0.9 meters (35 inches) to just over 1.4 meters (55 inches). Curvature of the spine (kyphoscoliosis and lordosis) progresses during childhood and can cause problems with breathing. Changes in the spinal bones (vertebrae) in the neck may also increase the risk of spinal cord damage. Other skeletal signs include flattened vertebrae (platyspondyly), a hip joint deformity in which the upper leg bones turn inward (coxa vara), and an inward- and downward-turning foot (called clubfoot). Decreased joint mobility and arthritis often develop early in life. Medical texts often state a mild and variable change to facial features, including cheekbones close to the nose appearing flattened, although this appears to be unfounded. Some infants are born with an opening in the roof of the mouth, which is called a cleft palate. Severe nearsightedness (high myopia) is sometimes present, as are other eye problems that can affect vision such as detached retinas. About one-quarter of people with this condition have mild to moderate hearing loss.
Because collagen plays an important role in the development of the body, people with Kniest Dysplasia will typically have their first symptoms at birth. These symptoms can include:.
- Musculoskeletal Problems
- Short limbs
- Shortened body trunk
- Flattened bones in the spine
- kyphoscoliosis
- Scoliosis (Lateral curvature of the spine)
- Early development of arthritis
- Respiratory problems
- Respiratory tract infection
- Difficulty breathing
- Eye problems
- Severe myopia (near-sightedness)
- Cataract (cloudiness in the lens of the eye)
- Hearing problems
- progressive hearing loss
- ear infections
Most symptoms are chronic and will continue to worsen as the individual ages. It is essential to have regular checkups with general doctors, orthopedist, ophthalmologists, and/or otorhinolaryngologists. This will help to detect whether there are any changes that could cause concern.
People with this condition are short-statured from birth, with a very short trunk and shortened limbs. Their hands and feet, however, are usually average-sized. Curvature of the spine (scoliosis and lumbar lordosis) may be severe and can cause problems with breathing. Changes in the spinal bones (vertebrae) in the neck may also increase the risk of spinal cord damage. Other skeletal signs include flattened vertebrae (platyspondyly), severe protrusion of the breastbone (pectus carinatum), a hip joint deformity in which the upper leg bones turn inward (coxa vara), and a foot deformity known as clubfoot.
Affected individuals have mild and variable changes in their facial features. The cheekbones close to the nose may appear flattened. Some infants are born with an opening in the roof of the mouth, which is called a cleft palate. Severe nearsightedness (high myopia) and detachment of the retina (the part of the eye that detects light and color) are also common.
This condition is also characterized by an unusual clubfoot with twisting of the metatarsals, inward- and upward-turning foot, tarsus varus, and inversion adducted appearances. Furthermore, they classically present with scoliosis (progressive curvature of the spine), and unusually positioned thumbs (hitchhiker thumbs). About half of infants with diastrophic dysplasia are born with an opening in the roof of the mouth called a cleft palate. Swelling of the external ears is also common in newborns and can lead to thickened, deformed ears.
The signs and symptoms of diastrophic dysplasia are similar to those of another skeletal disorder called atelosteogenesis, type 2; however diastrophic dysplasia tends to be less severe.
The distinctive characteristics of OSMED include severe bone and joint problems and very severe hearing loss. This disorder affects the epiphyses, the parts of the bone where growth occurs. People with the condition are often shorter than average because the bones in their arms and legs are unusually short. Other skeletal signs include enlarged joints, short hands and fingers, and flat bones of the spine (vertebrae). People with the disorder often experience back and joint pain, limited joint movement, and arthritis that begins early in life. Severe high-tone hearing loss is common. Typical facial features include protruding eyes; a sunken nasal bridge; an upturned nose with a large, rounded tip; and a small lower jaw. Some affected infants are born with an opening in the roof of the mouth, which is called a cleft palate.
Children with autosomal dominant MED experience joint pain and fatigue after exercising. Their x-rays show small and irregular ossifications centers, most apparent in the hips and knees. A waddling gait may develop. Flat feet are very common.
The spine is normal but may have a few irregularities, such as scoliosis. There are very small capital femoral epiphyses and hypoplastic, poorly formed acetabular roofs. Knees have metaphyseal widening and irregularity while hands have brachydactyly (short fingers) and proximal metacarpal rounding. By adulthood, people with MED are of short stature or in the low range of normal and have short limbs relative to their trunks. Frequently, movement becomes limited at the major joints, especially at the elbows and hips. However, loose knee and finger joints can occur. Signs of osteoarthritis usually begin in early adulthood.
Children with recessive MED experience joint pain, particularly of the hips and knees, and commonly have deformities of the hands, feet, knees, or vertebral column (like scoliosis). Approximately 50% of affected children have abnormal findings at birth (such as club foot or twisted metatarsals, cleft palate, inward curving fingers due to underdeveloped bones and brachydactyly, or ear swelling caused by injury during birth). Height is in the normal range before puberty. As adults, people with recessive MED are only slightly more diminished in stature, but within the normal range. Lateral knee radiography can show multi-layered patellae.
Spondyloepimetaphyseal dysplasia, Strudwick type is an inherited disorder of bone growth that results in dwarfism, characteristic skeletal abnormalities, and problems with vision. The name of the condition indicates that it affects the bones of the spine (spondylo-) and two regions near the ends of bones (epiphyses and metaphyses). This type was named after the first reported patient with the disorder. Spondyloepimetaphyseal dysplasia, Strudwick type is a subtype of collagenopathy, types II and XI.
The signs and symptoms of this condition at birth are very similar to those of spondyloepiphyseal dysplasia congenita, a related skeletal disorder. Beginning in childhood, the two conditions can be distinguished in X-ray images by changes in areas near the ends of bones (metaphyses). These changes are characteristic of spondyloepimetaphyseal dysplasia, Strudwick type.
Spondyloepimetaphyseal dysplasia, Pakistani type is a form of spondyloepimetaphyseal dysplasia involving "PAPSS2" (also known as "ATPSK2"). The condition is rare.
Spondyloperipheral dysplasia is an autosomal dominant disorder of bone growth. The condition is characterized by flattened bones of the spine (platyspondyly) and unusually short fingers and toes (brachydactyly). Some affected individuals also have other skeletal abnormalities, short stature, nearsightedness (myopia), hearing loss, and mental retardation. Spondyloperipheral dysplasia is a subtype of collagenopathy, types II and XI.
Spondyloepiphyseal dysplasia congenita (abbreviated to SED more often than SDC) is a rare disorder of bone growth that results in dwarfism, characteristic skeletal abnormalities, and occasionally problems with vision and hearing. The name of the condition indicates that it affects the bones of the spine (spondylo-) and the ends of bones (epiphyses), and that it is present from birth (congenital). The signs and symptoms of spondyloepiphyseal dysplasia congenita are similar to, but milder than, the related skeletal disorders achondrogenesis type 2 and hypochondrogenesis. Spondyloepiphyseal dysplasia congenita is a subtype of collagenopathy, types II and XI.
Spondyloepimetaphyseal dysplasia is a genetic condition affecting the bones.
Types include:
- Spondyloepimetaphyseal dysplasia, Strudwick type
- Spondyloepiphyseal dysplasia congenita
- Spondyloepimetaphyseal dysplasia, Pakistani type
Prenatal and neonatal diagnosis of boomerang dysplasia includes several prominent features found in other osteochondrodysplasias, though the "boomerang" malformation seen in the long bones is the delineating factor.
Featured symptoms of boomerang dysplasia include: dwarfism (a lethal type of infantile dwarfism caused by systemic bone deformities), underossification (lack of bone formation) in the limbs, spine and ilium (pelvis); proliferation of multinucleated giant-cell chondrocytes (cells that produce cartilage and play a role in skeletal development - chondrocytes of this type are rarely found in osteochondrodysplasias), brachydactyly (shortened fingers) and (undersized, shortened bones).
The characteristic "boomerang" malformation presents intermittently among random absences of long bones throughout the skeleton, in affected individuals. For example, one individual may have an absent radius and fibula, with the "boomerang" formation found in both ulnas and tibias. Another patient may present "boomerang" femora, and an absent tibia.
Opsismodysplasia can be characterized by a delay in bone maturation, which refers to "bone aging", an expected sequence of developmental changes in the skeleton corresponding to the chronological age of a person. Factors such as gender and ethnicity also play a role in bone age assessment. The only indicator of physical development that can be applied from birth through mature adulthood is bone age. Specifically, the age and maturity of bone can be determined by its state of ossification, the age-related process whereby certain cartilaginous and soft tissue structures are transformed into bone. The condition of epiphyseal plates (growth plates) at the ends of the long bones (which includes those of the arms, hands, legs and feet) is another measurement of bone age. The evaluation of both ossification and the state of growth plates in children is often reached through radiography (X-rays) of the carpals (bones of the hand and wrist). In opsismodysplasia, the process of ossification in long bones can be disrupted by a failure of ossification centers (a center of organization in long bones, where cartilage cells designated to await and undergo ossification gather and align in rows) to form. This was observed in a 16-month-old boy with the disorder, who had no apparent ossification centers in the carpals (bones of the hand and wrist) or tarsals (bones of the foot). This was associated with an absence of ossification in these bones, as well as disfigurement of the hands and feet at age two. The boy also had no ossification occurring in the lower femur (thigh bone) and upper tibia (the shin bone).
Diastrophic dysplasia (DTD) is an autosomal recessive dysplasia which affects cartilage and bone development. ("Diastrophism" is a general word referring to a twisting.) Diastrophic dysplasia is due to mutations in the "SLC26A2" gene.
Affected individuals have short stature with very short arms and legs and joint problems that restrict mobility.
Disproportionate short stature, deformity of the lower limbs, short fingers, and
ligamentous laxity give pseudoachondroplasia its distinctive features. The average height of adult males with the condition is around 120 centimeters (3 ft, 11 in), while adult females are typically around 116 cm (3ft, 9in). Affected individuals are not noticeably short at birth. Patients with pseudoachondroplasia present with gait abnormalities, lower limb deformity, or a retarded growth rate that characteristically appear at age 2-3 years. Disproportionate short stature is characterized by shortening of proximal limb segments (humeri and femora) also called rhizomelic shortening. Other known clinical features include, genu valgum/varum, brachydactyly (short fingers), supple flexion deformity of the hips, knees, hyperlordosis of lumbar spine, rocker bottom feet and broadening of the metaphyseal ends of long bones especially around the wrists, knees and ankles. Patients with pseudoachondroplasia have normal intelligence and craniofacial features, “Figure 1”, “Figure 2”, “Figure 3”.
Kniest Dysplasia is a rare form of dwarfism caused by a mutation in the COL2A1 gene on chromosome 12. The COL2A1 gene is responsible for producing type II collagen. The mutation of COL2A1 gene leads to abnormal skeletal growth and problems with hearing and vision. What characterizes kniest dysplasia from other type II Osteochondrodysplasia is the level of severity and the dumb-bell shape of shortened long tubular bones. This condition was first diagnosed by Dr. Wilhelm Kniest in 1952. Dr. Kniest noticed that his 50 year old patient was having difficulties with restricted joint mobility. The patient had a short stature and was also suffering from blindness. Upon analysis of the patient's DNA, Dr. Kniest discovered that a mutation had occurred at a splice site of the COL2A1 gene. This condition is very rare and occurs less than 1 in 1,000,000 people. Males and females have equal chances of having this condition. Currently, there is no cure for kniest dysplasia. Alternative names for Kniest Dysplasia can include Kniest Syndrome, Swiss Cheese Cartilage Syndrome, Kniest Chondrodystrophy, or Metatrophic Dwarfism Type II.
Infants with this condition have disproportionately short arms and legs with extra folds of skin. Other signs of the disorder include a narrow chest, small ribs, underdeveloped lungs, and an enlarged head with a large forehead and prominent, wide-spaced eyes.
Thanatophoric dysplasia is a lethal skeletal dysplasia divided into two subtypes. Type I is characterized by extreme rhizomelia, bowed long bones, narrow thorax, a relatively large head, normal trunk length and absent cloverleaf skull. The spine shows platyspondyly, the cranium has a short base, and, frequently, the foramen magnum is decreased in size. The forehead is prominent, and hypertelorism and a saddle nose may be present. Hands and feet are normal, but fingers are short. Type II is characterized by short, straight long bones and cloverleaf skull.
It presents with typical telephone handled shaped long bones and a H-shaped vertebrae.
"Maffucci syndrome" is a sporadic disease characterized by the presence of multiple enchondromas associated with multiple simple or cavernous soft tissue hemangiomas. Also lymphangiomas may be apparent.
Patients are normal at birth and the syndrome manifests during childhood and puberty. The enchondromas affect the extremities and their distribution is asymmetrical.
Otospondylomegaepiphyseal dysplasia (OSMED) is an autosomal recessive disorder of bone growth that results in skeletal abnormalities, severe hearing loss, and distinctive facial features. The name of the condition indicates that it affects hearing (oto-) and the bones of the spine (spondylo-), and enlarges the ends of bones (megaepiphyses).
The features of OSMED are similar to those of another skeletal disorder, Weissenbacher-Zweymüller syndrome. Otospondylomegaepiphyseal dysplasia is a subtype of collagenopathy, types II and XI.
"Fibrous dysplasia" causes bone thinning and growths or lesions in one or more bones of the human body.
These lesions are tumor-like growths that consist of replacement of the medullary bone with fibrous tissue, causing the expansion and weakening of the areas of bone involved. Especially when involving the skull or facial bones, the lesions can cause externally visible deformities. The skull is often, but not necessarily, affected, and any other bone(s) can be involved.
Infants with type 1 thanatophoric dysplasia also have curved thigh bones, flattened bones of the spine (platyspondyly) and shortened thoracic ribs. Note: Prenatal ultra-sound images of the ribs sometimes appear asymmetrical when in fact they are not. In certain cases, this has caused a misdiagnosis of Osteogenisis Imperfecta (OI) type II.
An unusual head shape called kleeblattschädel ("cloverleaf skull") can be seen with type 2 thanatophoric dysplasia.
In contrast to STD, the subtype spondylocostal dysostosis, or SCD features intrinsic rib anomalies, in addition to vertebral anomalies. Intrinsic rib anomalies include defects such as birfurcation, broadening and fusion that are not directly related to the vertebral anomalies (such as in STD, where extensive posterior rib fusion occurs due to segmentation defects and extreme shortening of the thoracic vertebral column). In both subtypes, the pulmonary restriction may result in pulmonary hypertension, and have other potential cardiac implications.
Babies born with Jarcho-Levin may be very healthy and grow up to lead normal lives. However, many individuals with Jarcho-Levin suffer from problems of respiratory insufficiency secondary to volume-restricted thoraces. These individuals will often develop pulmonary complications and die in infancy or early childhood. The disparity in outcomes of those with the syndrome is related to the fact that Jarcho-Levin actually encompasses two or more distinct syndromes, each with its own range of prognoses. The syndromes currently recognized as subtypes of Jarcho-Levin are termed spondylothoracic dysplasia and spondylocostal dysostosis. The disease is related to the SRRT gene.
Hematologic manifestations related to bone marrow suppression and subsequent pancytopenia are a major source of morbidity and mortality. Additionally extramedullary hematopoiesis can result in liver and spleen dysfunction. Cranial nerve dysfunction and neurologic complications are usually associated with infantile osteopetrosis. Expansion of the skull bone leads to macrocephaly. Additionally, linear growth retardation that is not apparent at birth, delayed motor milestones and poor dentition can occur.