Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Usually, the first respiratory symptoms are dyspnea and paradoxical respirations which then escalate within the first few months of life to diaphragmatic paralysis. The symptoms of diaphragmatic paralysis come on very rapidly and without warning, and the patient is often rushed to a hospital where they are placed on a ventilator for respiratory support. Due to the severe nature of diaphragmatic paralysis the patient eventually needs continuous ventilation support to survive. Continuous ventilation, however, may in itself cause damage to the anatomy of the lungs.
In addition to diaphragmatic paralysis other issues may arise: as the name suggests, the distal limbs are most affected with symptoms of weakness, restricting mobility due to (near-)paralysis of the distal limbs as well as the head and neck. Also, dysfunction of the peripheral nerves and the autonomic nervous system may occur. Due to these dysfunctions the patients have been shown to suffer from excessive sweating and irregular heartbeat. The deep tendon reflex is also lost in patients with DSMA1.
Uterine growth retardation and poor foetal movement have been observed in severe DSMA1 cases.
The symptoms vary depending on the SMA type, the stage of the disease as well as individual factors. Signs and symptoms below are most common in the severe SMA type 0/I:
- Areflexia, particularly in extremities
- Overall muscle weakness, poor muscle tone, limpness or a tendency to flop
- Difficulty achieving developmental milestones, difficulty sitting/standing/walking
- In small children: adopting of a frog-leg position when sitting (hips abducted and knees flexed)
- Loss of strength of the respiratory muscles: weak cough, weak cry (infants), accumulation of secretions in the lungs or throat, respiratory distress
- Bell-shaped torso (caused by using only abdominal muscles for respiration) in severe SMA type
- Fasciculations (twitching) of the tongue
- Difficulty sucking or swallowing, poor feeding
The primary symptom of camptocormia is abnormal forward bending of the torso. This bending becomes worse while walking but does not appear when the affected individual is lying down in a horizontal position. This alleviation of the condition indicates that it is a manifestation of another disease or ailment and is not due to a spine that is actually bent. This is somewhat ironic, since the medically accepted name for the condition is bent spine syndrome.
In an afflicted individual, the abnormal bending consists of an anterior flexion greater than 45 degrees. Because of this bending and the physical limitations caused by the conditions associated with the disease, it is usually impossible for an afflicted person to achieve a fully erect position. In addition, patients suffering from camptocormia often experience low back pain as a result of the condition. BSS often appears in individuals afflicted with Parkinson’s disease, muscular dystrophies, endocrine disorders, inflammatory conditions (myositis), or mitochondrial myopathies. As previously mentioned, the disease is more common in older individuals.
Congenital distal spinal muscular atrophy (congenital dSMA) is a hereditary genetic condition characterized by muscle wasting (atrophy), particularly of distal muscles in legs and hands, and by early-onset contractures (permanent shortening of a muscle or joint) of the hip, knee, and ankle. Affected individuals often have shorter lower limbs relative to the trunk and upper limbs. The condition is a result of a loss of anterior horn cells localized to lumbar and cervical regions of the spinal cord early in infancy, which in turn is caused by a mutation of the "TRPV4" gene. The disorder is inherited in an autosomal dominant manner. Arm muscle and function, as well as cardiac and respiratory functions are typically well preserved.
When initially identified, camptocormia was classified as a psychogenic disease. Although the condition is sometimes a psychogenic manifestation, camptocormia typically originates from either muscular or neurological diseases. However, due to the wide variety of pathologies resulting in camptocormia, there is no singular cause that is most influential for the condition.
Symptoms of HNA may include pain in the back, neck, arms, or shoulders, nerve pulls in the arms or back, muscular atrophy, and weakness.
Patient feels contracture of middle and ring finger. Slight thinning of the subdigital Palm of the affected fingers. Initial pain and weakness subside with preliminary treatment with antiinflammatories, and B-complex vitamins. Initial loss of function improves almost fully.
DSMA1 was identified and classified as a sub-group of spinal muscular atrophies (SMA) in 1974. Currently, various classifications include DSMA1 among general spinal muscular atrophies or distal hereditary motor neuropathies, though the latter has been argued to be more correct.
X-linked spinal muscular atrophy type 2 (SMAX2, XLSMA), also known as arthrogryposis multiplex congenita X-linked type 1 (AMCX1), is a rare neurological disorder involving death of motor neurons in the anterior horn of spinal cord resulting in generalised muscle wasting (atrophy). The disease is caused by a mutation in "UBA1" gene and is passed in a X-linked recessive manner by carrier mothers to affected sons.
Affected babies have general muscle weakness, weak cry and floppy limbs; consequently, the condition is usually apparent at or even before birth. Symptoms resemble the more severe forms of the more common spinal muscular atrophy (SMA); however, SMAX2 is caused by a different genetic defect and only genetic testing can correctly identify the disease.
The disorder is usually fatal in infancy or early childhood due to progressive respiratory failure, although survival into teenage years have been reported. As with many genetic disorders, there is no known cure to SMAX2. Appropriate palliative care may be able to increase quality of life and extend lifespan.
Early signs often include weakness of tongue and mouth muscles, fasciculations, and gradually increasing weakness of limb muscles with muscle wasting. Neuromuscular management is supportive, and the disease progresses very slowly, but can eventually lead to extreme disability. Further signs and symptoms include:
FLD produces rapidly progressive weakness of tongue, face and pharyngeal muscles in a clinical pattern similar to myasthenia. Neuromuscular transmission may be abnormal in these muscles because of rapid denervation and immature reinnervation. Paralysis occurs secondary to degeneration of the motor neurons of the brain stem. It causes progressive bulbar paralysis due to involvement of motor neurons of the cranial nerve nuclei. The most frequent symptoms at onset of progressive bulbar paralysis of childhood has been a unilateral facial paralysis. It is followed in frequency by dysarthria due to facial weakness or by dysphagia. Palatal weakness and palpebral ptosis also have been reported in few patients. Both sexes can be affected.
Individuals with SBMA have muscle cramps and progressive weakness due to degeneration of motor neurons in the brain stem and spinal cord. Ages of onset and severity of manifestations in affected males vary from adolescence to old age, but most commonly develop in middle adult life. The syndrome has neuromuscular and endocrine manifestations.
The symptoms of MMA usually progress slowly for one to two years before reaching a plateau, and then remain stable for many years. Disability is generally slight. Rarely, the weakness progresses to the opposite limb. There is also a slowly progressive variant of MMA known as O'Sullivan-McLeod syndrome, which only affects the small muscles of the hand and forearm and has a slowly progressive course.
Fazio–Londe disease (FLD), also called progressive bulbar palsy of childhood, is a very rare inherited motor neuron disease of children and young adults and is characterized by progressive paralysis of muscles innervated by cranial nerves.
HNA is an episodic disorder; it is characterized by episodes generally lasting 1–6 weeks. During an episode, the nerves of the brachial plexus are targeted by the body as antigens, and the body's immune system begins to degenerate the nerves of the brachial plexus. The exact order or location of the nerve degeneration cannot be predicted before an episode. Other areas of the nervous system that have been affected are the phrenic nerves and the recurrent laryngeal. As the nerves lose function, the muscles associated with those nerves begin to atrophy. In brachial plexus degeneration, atrophy may occur in the deltoid muscles. In phrenic nerve degeneration, the diaphragm may be affected. In this case, breathing can be impaired due to a lack of muscle control of the diaphragm. If the recurrent larangyl nerve is targeted, the pharynx will begin to atrophy and voice function may be lost.
Onset usually occurs within the first two decades of life, commonly in the teenage years or the twenties. Life expectancy is normal. High arch of the foot (pes cavus) is common. Patients also have trouble controlling their hands, due to muscle loss on the thumb side of the index finger and palm below the thumb. It is rare for a person with this disorder to lose the ability to walk, though changes in gait may occur later in life.
Frequency of this disorder is unknown.
Neuropathy disorders usually have onset in childhood or young adulthood. Motor symptoms seem to be more predominant that sensory symptoms. Symptoms of these disorders include: fatigue, pain, lack of balance, lack of feeling, lack of reflexes, and lack of sight and hearing, which result from muscle atrophy. Patients can also suffer from high arched feet, hammer toes, foot drop, foot deformities, and scoliosis. These symptoms are a result of severe muscular weakness and atrophy. In patients suffering from demyelinating neuropathy, symptoms are due to slow nerve conduction velocities, however people with axonal degradation have average to normal nerve conduction velocities.
In an individual with dHMN V, electromyography will show pure motor neuropathy, patterns of weakness without upper motor neuron damage, in the hands. Tendon reflexes will also appear normal. Clinical, electrophysiological, and pathological testing will show a lack of damage to sensory neurons, differentiating this disease from CMT.
In all spinal muscular atrophies, the primary feature is muscle weakness accompanied by atrophy of muscle. This is the result of denervation, or loss of the signal to contract that is transmitted by the motor neurons in the spinal cord. The signal is normally transmitted from the spinal cord to muscle via the motor neuron's axon, but in spinal muscular atrophies either the entire motor neuron or the motor neuron's axon loses the ability to transmit signals to muscles.
The symptoms are strongly related to the exact disease (see above) and, sometimes, to the age of onset. Certain conditions (e.g., spinal muscular atrophy or spinal and bulbar muscular atrophy) have a wide range, from infancy to adult, fatal to trivial, with different affected individuals manifesting every shade of impairment between these two extremes. Other muscular atrophies have a different and often very severe course. Some of them are extremely rare and described only in a handful of individuals. However, in all cases the majority of symptoms are a consequence of muscle weakness.
SMA manifests over a wide range of severity, affecting infants through adults. The disease spectrum is variously divided into 3–5 types, in accordance either with the age of onset of symptoms or with the highest attained milestone of motor development.
The most commonly used classification is as follows:
The most severe form of SMA type I is sometimes termed SMA type 0 (or, severe infantile SMA) and is diagnosed in babies that are born so weak that they can survive only a few weeks even with intensive respiratory support. SMA type 0 should not be confused with SMARD1 which may have very similar symptoms and course but has a different genetic cause than SMA.
Motor development in people with SMA is usually assessed using validated functional scales – CHOP INTEND (The Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders) in SMA1; and either the Motor Function Measure scale or one of a few variants of Hammersmith Functional Motor Scale in SMA types 2 and 3.
The eponymous label "Werdnig–Hoffmann disease" (sometimes misspelled with a single "n") refers to the earliest clinical descriptions of childhood SMA by Johann Hoffmann and Guido Werdnig. The eponymous term "Kugelberg–Welander disease" is after Erik Klas Hendrik Kugelberg (1913-1983) and Lisa Welander (1909-2001), who distinguished SMA from muscular dystrophy. Rarely used "Dubowitz disease" (not to be confused with Dubowitz syndrome) is named after Victor Dubowitz, an English neurologist who authored several studies on the intermediate SMA phenotype.
Clinical signs and symptoms depend on which spinal cord level (cervical, thoracic or lumbar) is affected and the extent (anterior, posterior or lateral) of the pathology, and may include:
- upper motor neuron signs—weakness, spasticity, clumsiness, altered tonus, hyperreflexia and pathological reflexes, including Hoffmann's sign and inverted Plantar reflex (positive Babinski sign);
- lower motor neuron signs—weakness, clumsiness in the muscle group innervated at the level of spinal cord compromise, muscle atrophy, hyporeflexia, muscle hypotonicity or flaccidity, fasciculations;
- sensory deficits;
- bowel/bladder symptoms and sexual dysfunction.
Patients with acquired non-inflammatory myopathy typically experience weakness, cramping, stiffness, and tetany, most commonly in skeletal muscle surrounding the limbs and upper shoulder girdle.
The most commonly reported symptoms are:
- Muscle fatigue
- Pain
- Muscle spasms and cramps
- Tingling
- Numbness
- Tetany
- Loss of coordination and balance
- Lack of fine and gross motor control
- Muscular wasting and atrophy
Distal hereditary motor neuronopathies (distal HMN, dHMN), sometimes also called distal hereditary motor neuropathies, are a genetically and clinically heterogeneous group of motor neuron diseases that result from genetic mutations in various genes and are characterized by degeneration and loss of motor neuron cells in the anterior horn of the spinal cord and subsequent muscle atrophy.
Although they can hardly be distinguished from hereditary motor and sensory neuropathies on the clinical level, dHMNs are considered a separate class of disorders.
While the presence of several symptoms may point towards a particular genetic disorder of the spinal muscular atrophy group, the actual disease can be established with full certainty only by genetic testing which detects the underlying genetic mutation.
In medicine, split hand syndrome is a neurological syndrome in which the hand muscles on the side of the thumb (lateral, thenar eminence) appear wasted, whereas the muscles on the side of the little finger (medial, hypothenar eminence) are spared. Anatomically, the abductor pollicis brevis and first dorsal interosseous muscle are more wasted than the abductor digiti minimi.
If lesions affecting the branches of the ulnar nerve that run to the wasted muscles are excluded, the lesion is almost sure to be located in the anterior horn of the spinal cord at the C8-T1 level. It has been proposed as a relatively specific sign for amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). It can also occur in other disorders affecting the anterior horn, such as spinal muscular atrophy, Charcot-Marie-Tooth disease, poliomyelitis and progressive muscular atrophy. A slow onset and a lack of pain or sensorial symptoms are arguments against a lesion of the spinal root or plexus brachialis. To an extent, these features can also be seen in normal aging (although technically, the apparent muscle wasting is sarcopenia rather than atrophy).
The term split hand syndrome was first coined in 1994 by a researcher from the Cleveland Clinic called Asa J. Wilbourn.