Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Familial exudative vitreoretinopathy (FEVR) ( ) is a genetic disorder affecting the growth and development of blood vessels in the retina of the eye. This disease can lead to visual impairment and sometimes complete blindness in one or both eyes. FEVR is characterized by exudative leakage and hemorrhage of the blood vessels in the retina, along with incomplete vascularization of the peripheral retina. The disease process can lead to retinal folds, tears, and detachments.
Geographic atrophy (GA) is a chronic disease, which leads to visual function loss. This often results in difficulties performing daily tasks such as reading, recognizing faces, and driving, and ultimately has severe consequences on independence.
Initially, patients often have good visual acuity if the GA lesions are not involved in the central macular, or foveal, region of the retina. As such, a standard vision test may underrepresent the visual deficit experienced by patients who report challenges reading, driving or seeing in low light conditions.
Geographic Atrophy (GA), also known as atrophic age-related macular degeneration (AMD) or advanced dry AMD, is an advanced form of age-related macular degeneration that can result in the progressive and irreversible loss of retina (photoreceptors, retinal pigment epithelium, choriocappillaris) which can lead to a loss of visual function over time. It is estimated that GA affects >5 million people worldwide and approximately 1 million patients in the US, which is similar to the prevalence of neovascular (wet) AMD, the other advanced form of the disease.
The incidence of advanced AMD, both geographic atrophy and neovascular AMD, increases exponentially with age and while there are therapies for wet AMD, GA currently has no approved treatment options. The aim of most current clinical trials is to reduce the progression of GA lesion enlargement.
Hair growth on the head is noticeably less full than normal, and the hairs are very weak; the rest of the body shows normal hair.
The macular degeneration comes on slowly with deterioration of central vision, leading to a loss of reading ability. Those affected may otherwise develop in a completely healthy manner; life expectancy is normal.
FEVR is, as its name suggests,
familial and can be inherited in an
autosomal dominant, autosomal
recessive or X-linked recessive pattern.1-3 It is caused by mutations in
FZD4, LRP5, TSPAN12 and NDP
genes, which impact the wingless/
integrated (Wnt) receptor signaling
pathway. 3 Disruption of this path
way leads to abnormalities of vascu-
lar growth in the peripheral retina. 2,3
It is typically bilateral, but asymmetric, with varying degrees of
progression over the individual’s
lifetime. Age of onset varies, and
visual outcome can be strongly
influenced by this factor. Patients
with onset before age three have a
more guarded long-term prognosis
whereas those with later onset are
more likely to have asymmetric
presentation with deterioration of
vision in one eye only. 2-3 However,
because FEVR is a lifelong disease,
these patients are at risk even as
adults.2 Ocular findings and useful
vision typically remain stable if the
patient does not have deterioration
before age 20.2,4 Due to the variability and unpredictability of the
disease course, patients with FEVR
should be followed throughout
their lifetime.
Clinical presentation can vary
greatly. In mild variations, patients
may experience peripheral vascular
changes, such as peripheral avascular zone, vitreoretinal adhesions,
arteriovenous anastomoses and a
V-shaped area of retinochoroidal
degeneration. 4 Severe forms may
present with neovascularization,
subretinal and intraretinal hemorrhages and exudation. 4 Neovascularization is a poor prognostic
indicator and can lead to retinal
folds, macular ectopia and tractional retinal detachment. 2,4 Widefield FA has been crucial in
helping to understand this disease,
as well as helping to confirm the
diagnosis. An abrupt cessation
of the retinal capillary network
in a scalloped edge posterior to
fibrovascular proliferations can
be made using FA.2,3,5 Patients can
also show delayed transit filling on
FA as well as delayed/patchy choroidal filling, bulbous vascular terminals, capillary dropout, venous/venous shunting and abnormal
branching patterns. 2,3,5 The staging of FEVR is similar
to that of retinopathy of prematurity. The first two stages involve an
avascular retinal periphery with or
without extraretinal vascularization (stage 1 and 2, respectively). 4 Stages three through five delineate
levels of retinal detachment; stage 3
is subtotal without foveal involvement, stage 4 is subtotal with foveal
involvement and stage 5 is a total
detachment, open or closed funnel.4
Because there was neovascularization in the absence of retinal detachment, our patient was
considered to have
stage 2.
Terrien marginal degeneration is a noninflammatory, unilateral or asymmetrically bilateral, slowly progressive thinning of the peripheral corneal stroma.
The cause of Terrien marginal degeneration is unknown, its prevalence is roughly equal between males and females, and it usually occurs in the second or third decade of life.
Clinically, there is an acute onset of visual loss, first in one eye, and then a few weeks to months later in the other. Onset is usually young adulthood, but age range at onset from 7-75 is reported. The age of onset is slightly higher in females (range 19–55 years: mean 31.3 years) than males (range 15–53 years: mean 24.3). The male to female ratio varies between mutations: 3:1 for 3460 G>A, 6:1 for 11778 G>A and 8:1 for 14484 T>C.
This typically evolves to very severe optic atrophy and a permanent decrease of visual acuity. Both eyes become affected either simultaneously (25% of cases) or sequentially (75% of cases) with a median inter-eye delay of 8 weeks. Rarely only one eye may be affected. In the acute stage, lasting a few weeks, the affected eye demonstrates an edematous appearance of the nerve fiber layer especially in the arcuate bundles and enlarged or telangiectatic and tortuous peripapillary vessels (microangiopathy). The main features are seen on fundus examination, just before or subsequent to the onset of visual loss. A pupillary defect may be visible in the acute stage as well. Examination reveals decreased visual acuity, loss of color vision and a cecocentral scotoma on visual field examination.
Pain is not typically present in pellucid marginal degeneration, and aside from vision loss, no symptoms accompany the condition. However, in rare cases, PMD may present with sudden onset vision loss and excruciating eye pain, which occurs if the thinning of the cornea leads to perforation. While PMD usually affects both eyes, some unilateral cases have been reported.
PMD is characterized by bilateral thinning (ectasia) in the inferior and peripheral region of the cornea. The distribution of the degeneration is crescent or arcuate shaped. The cornea just above the region of thinning is of normal thickness, and may protrude anteriorly, which creates an irregular astigmatism. This is described as a "beer belly" appearance since the greatest protrusion occurs below the horizontal midline (unlike keratoconus). Normally, PMD does not present with vascularization of the cornea, scarring, or any deposits of lipid.
Autosomal Dominant Retinal Vasculopathy with Cerebral Leukodystrophy (AD-RVCL) (previously known also as Cerebroretinal Vasculopathy, CRV, or Hereditary Vascular Retinopathy, HVR or Hereditary Endotheliopathy, Retinopathy, Nephropathy, and Stroke, HERNS) is an inherited condition resulting from a frameshift mutation to the TREX1 gene. This genetically inherited condition affects the retina and the white matter of the central nervous system, resulting in vision loss, lacunar strokes and ultimately dementia. Symptoms commonly begin in the early to mid-forties, and treatments currently aim to manage or alleviate the symptoms rather than treating the underlying cause. The overall prognosis is poor, and death can sometimes occur within 10 years of the first symptoms appearing.
AD-RVCL (CRV) Acronym
Autosomal Dominance (genetics) means only one copy of the gene is necessary for the symptoms to manifest themselves.
Retinal Vasculopathy means a disorder that is associated with a disease of the blood vessels in the retina.
Cerebral means having to do with the brain.
Leukodystrophy means a degeneration of the white matter of the brain.
Pathogenesis
The main pathologic process centers on small blood vessels that prematurely “drop out” and disappear. The retina of the eye and white matter of the brain are the most sensitive to this pathologic process. Over a five to ten-year period, this vasculopathy (blood vessel pathology) results in vision loss and destructive brain lesions with neurologic deficits and death.
Most recently, AD-RVCL (CRV) has been renamed. The new name is CHARIOT which stands for Cerebral Hereditary Angiopathy with vascular Retinopathy and Impaired Organ function caused by TREX1 mutations.
Treatment
Currently, there is no therapy to prevent the blood vessel deterioration.
About TREX1
The official name of the TREX1 gene is “three prime repair exonuclease 1.” The normal function of the TREX1 gene is to provide instructions for making the 3-prime repair exonuclease 1 enzyme. This enzyme is a DNA exonuclease, which means it trims molecules of DNA by removing DNA building blocks (nucleotides) from the ends of the molecules. In this way, it breaks down unneeded DNA molecules or fragments that may be generated during genetic material in preparation for cell division, DNA repair, cell death, and other processes.
Changes (mutations) to the TREX1 gene can result in a range of conditions one of which is AD-RVCL. The mutations to the TREX1 gene are believed to prevent the production of the 3-prime repair exonuclease 1 enzyme. Researchers suggest that the absence of this enzyme may result in an accumulation of unneeded DNA and RNA in cells. These DNA and RNA molecules may be mistaken by cells for those of viral invaders, triggering immune system reactions that result in the symptoms of AD-RVCL.
Mutations in the TREX1 gene have also been identified in people with other disorders involving the immune system. These disorders include a chronic inflammatory disease called systemic lupus erythematosus (SLE), including a rare form of SLE called chilblain lupus that mainly affects the skin.
The TREX1 gene is located on chromosome 3: base pairs 48,465,519 to 48,467,644
The immune system.
- The immune system is composed of white blood cells or leukocytes.
- There are 5 different types of leukocytes.
- Combined, the 5 different leukocytes represent the 2 types of immune systems (The general or innate immune system and the adaptive or acquired immune system).
- The adaptive immune system is composed of two types of cells (B-cells which release antibodies and T-cells which destroy abnormal and cancerous cells).
How the immune system becomes part of the condition.
During mitosis, tiny fragments of “scrap” single strand DNA naturally occur inside the cell. Enzymes find and destroy the “scrap” DNA. The TREX1 gene provides the information necessary to create the enzyme that destroys this single strand “scrap” DNA. A mutation in the TREX1 gene causes the enzyme that would destroy the single strand DNA to be less than completely effective. The less than completely effective nature of the enzyme allows “scrap” single strand DNA to build up in the cell. The buildup of “scrap” single strand DNA alerts the immune system that the cell is abnormal.
The abnormality of the cells with the high concentration of “scrap” DNA triggers a T-cell response and the abnormal cells are destroyed. Because the TREX1 gene is identical in all of the cells in the body the ineffective enzyme allows the accumulation of “scrap” single strand DNA in all of the cells in the body. Eventually, the immune system has destroyed enough of the cells in the walls of the blood vessels that the capillaries burst open. The capillary bursting happens throughout the body but is most recognizable when it happens in the eyes and brain because these are the two places where capillary bursting has the most pronounced effect.
Characteristics of AD-RVCL
- No recognizable symptoms until after age 40.
- No environmental toxins have been found to be attributable to the condition.
- The condition is primarily localized to the brain and eyes.
- Optically correctable, but continuous, deterioration of visual acuity due to extensive multifocal microvascular abnormalities and retinal neovascularization leading, ultimately, to a loss of vision.
- Elevated levels of alkaline phosphatase.
- Subtle vascular changes in the retina resembling telangiectasia (spider veins) in the parafovea circulation.
- Bilateral capillary occlusions involving the perifovea vessels as well as other isolated foci of occlusion in the posterior pole of the retina.
- Headaches due to papilledema.
- Mental confusion, loss of cognitive function, loss of memory, slowing of speech and hemiparesis due to “firm masses” and white, granular, firm lesions in the brain.
- Jacksonian seizures and grand mal seizure disorder.
- Progressive neurologic deterioration unresponsive to systemic corticosteroid therapy.
- Discrete, often confluent, foci of coagulation necrosis in the cerebral white matter with intermittent findings of fine calcium deposition within the necrotic foci.
- Vasculopathic changes involving both arteries and veins of medium and small caliber present in the cerebral white matter.
- Fibroid necrosis of vessel walls with extravasation of fibrinoid material into adjacent parenchyma present in both necrotic and non-necrotic tissue.
- Obliterative fibrosis in all the layers of many vessel walls.
- Parivascular, adventitial fibrosis with limited intimal thickening.
Conditions with similar symptoms that AD-RVCL can be misdiagnosed as:
- Brain tumors
- Diabetes
- Macular degeneration
- Telangiectasia (Spider veins)
- Hemiparesis (Stroke)
- Glaucoma
- Hypertension (high blood pressure)
- Systemic Lupus Erythematosus (SLE (same original pathogenic gene, but definitely a different disease because of a different mutation in TREX1))
- Polyarteritis nodosa
- Granulomatosis with polyangiitis
- Behçet's disease
- Lymphomatoid granulomatosis
- Vasculitis
Clinical Associations
- Raynaud's phenomenon
- Anemia
- Hypertension
- Normocytic anemia
- Normochromic anemia
- Gastrointestinal bleeding or telangiectasias
- Elevated alkaline phosphatase
Definitions
- Coagulation necrosis
- Endothelium
- Fibrinoid
- Fibrinoid necrosis
- Frameshift mutation
- Hemiparesis
- Jacksonian seizure
- Necrotic
- Necrosis
- Papilledema
- Perivascular
- Retinopathy
- Telangiectasia
- Vasculopathy
- Vascular
What AD-RVCL is not:
- Infection
- Cancer
- Diabetes
- Glaucoma
- Hypertension
- A neurological disorder
- Muscular dystrophy
- Systemic Lupus Erythematosis (SLE)
- Vasculitis
Things that have been tried but turned out to be ineffective or even make things worse:
- Antibiotics
- Steroids
- X-Ray therapy
- Immunosuppression
History of AD-RVCL (CRV)
- 1985 – 1988: CRV (Cerebral Retinal Vasculopathy) was discovered by John P. Atkinson, MD at Washington University School of Medicine in St. Louis, MO
- 1988: 10 families worldwide were identified as having CRV
- 1991: Related disease reported, HERNS (Hereditary Endiotheliopathy with Retinopathy, Nephropathy and Stroke – UCLA
- 1998: Related disease reported, HRV (Hereditary Retinal Vasculopathy) – Leiden University, Netherlands
- 2001: Localized to Chromosome 3.
- 2007: The specific genetic defect in all of these families was discovered in a single gene called TREX1
- 2008: Name changed to AD-RVCL Autosomal Dominant-Retinal Vasculopathy with Cerebral Leukodystrophy
- 2009: Testing for the disease available to persons 21 and older
- 2011: 20 families worldwide were identified as having CRV
- 2012: Obtained mouse models for further research and to test therapeutic agents
In general, PRAs are characterised by initial loss of rod photoreceptor cell function followed by that of the cones and for this reason night blindness is the first significant clinical sign for most dogs affected with PRA. As other retinal disorders, PRA can be divided into either dysplastic disease, where the cells develop abnormally, and degenerative, where the cells develop normally but then degenerate during the dog's lifetime.
Generalized PRA is the most common type and causes atrophy of all the neural retinal structures. Central progressive retinal atrophy (CPRA) is a different disease from PRA involving the retinal pigment epithelium (RPE), and is also known as retinal pigment epithelial dystrophy (RPED).
"LHON Plus" is a name given to a rare variant of the disorder with eye disease together with other conditions. The symptoms of this higher form of the disease include loss of the brain's ability to control the movement of muscles, tremors, and cardiac arrhythmia. Many cases of LHON plus have been comparable to multiple sclerosis because of the lack of muscular control.
Pellucid marginal degeneration (PMD), is a degenerative corneal condition, often confused with keratoconus. It is typically characterized by a clear, bilateral thinning (ectasia) in the inferior and peripheral region of the cornea, although some cases affect only one eye. The cause of the disease remains unclear.
The term "pellucid marginal degeneration" was first coined in 1957 by the ophthalmologist Schalaeppi. The word "pellucid" means clear, indicating that the corneas retain clarity in pellucid marginal degeneration.
Progressive retinal atrophy (PRA) is a group of genetic diseases seen in certain breeds of dogs and, more rarely, cats. Similar to retinitis pigmentosa in humans, it is characterized by the bilateral degeneration of the retina, causing progressive vision loss culminating in blindness. The condition in nearly all breeds is inherited as an autosomal recessive trait, with the exception of the Siberian Husky (inherited as an X chromosome linked trait) and the Bullmastiff (inherited as an autosomal dominant trait). There is no treatment.
"Typical lattice" consists of sharply demarcated, spindle-shaped areas of retinal thinning, usually located between the equator of the retina and the posterior border of the vitreous base. This is more frequently located in the temporal half of the retina and is seen more superiorly than inferiorly.
"Atypical lattice" is characterised by radial lesions which appear continuous with the peripheral blood vessels. This type is typically seen in patients with Stickler syndrome.
Lattice degeneration is a disease of the human eye wherein the peripheral retina becomes atrophic in a lattice pattern and may develop tears, breaks, or holes, which may further progress to retinal detachment. It is an important cause of retinal detachment in young myopic individuals. The cause is unknown, but pathology reveals inadequate blood flow resulting in ischemia and fibrosis.
Lattice degeneration occurs in approximately 6–8% of the general population and in approximately 30% of phakic retinal detachments. Similar lesions are seen in patients with Ehlers-Danlos syndrome, Marfan syndrome, and Stickler syndrome, all of which are associated with an increased risk of retinal detachment. Risk of developing lattice degeneration in one eye is also increased if lattice degeneration is already present in the other eye.
Zenker's degeneration is a severe glassy or waxy hyaline degeneration or necrosis of skeletal muscles in acute infectious diseases ;a prototype of coagulative necrosis.
The condition was named by Friedrich Albert von Zenker. It is a hyaline degeneration of skeletal muscles such as rectus abdominis and diaphragm, and occurs in severe toxaemia as typhoid fever. It is also seen in electrical burns. Grossly the muscles appear pale and friable; microscopically, the muscle fibres are swollen, have a loss of cross striations, and show a hyaline appearance. Rupture and small hemorrhage may complicate the lesion. Coagulative necrosis occurs here.
This type of retinoschisis is very common with a prevalence of up to 7 percent in normal persons. Its cause is unknown. It can easily be confused with retinal detachment by the non-expert observer and in difficult cases even the expert may have difficulty differentiating the two. Such differentiation is important since retinal detachment almost always requires treatment while retinoschisis never itself requires treatment and leads to retinal detachment (and hence to visual loss) only occasionally. Unfortunately one still sees cases of uncomplicated retinoschisis treated by laser retinopexy or cryopexy in an attempt to stop its progression towards the macula. Such treatments are not only ineffective but unnecessarily risk complications. There is no documented case in the literature of degenerative retinoschisis itself (as opposed to the occasional situation of retinal detachment complicating retinoschisis) in which the splitting of the retina has progressed through the fovea. There is no clinical utility in differentiating between typical and reticular retinoschisis. Degenerative retinoschisis is not known to be a genetically inherited condition.
There is always vision loss in the region of the schisis as the sensory retina is separated from the ganglion layer. But like the loss is in the periphery, it goes unnoticed. It is the very rare schisis that encroaches on the macula where retinopexy is then properly used.
Retinoschisis is an eye disease characterized by the abnormal splitting of the retina's neurosensory layers, usually in the outer plexiform layer. Most common forms are asymptomatic, some rarer forms result in a loss of vision in the corresponding visual field.
Hypotrichosis with juvenile macular dystrophy (HJMD or CDH3) is an extremely rare congenital disease characterized by sparse hair growth (hypotrichosis) from birth and progressive macular corneal dystrophy.
Drusen are associated with aging and macular degeneration are distinct from another clinical entity, optic disc drusen, which is present on the optic nerve head. Both age-related drusen and optic disc drusen can be observed by ophthalmoscopy. Optical coherence tomography scans of the orbits or head, calcification at the head of the optic nerve without change in size of globe strongly suggests drusen in a middle-age or elderly patient.
Whether drusen promote AMD or are symptomatic of an underlying process that causes both drusen and AMD is not known, but they are indicators of increased risk of the complications of AMD.
'Hard drusen' may coalesce into 'soft drusen' which is a manifestation of macular degeneration.
Signs and symptoms of macular degeneration include:
- Visual symptoms
- Distorted vision in the form of metamorphopsia, in which a grid of straight lines appears wavy and parts of the grid may appear blank: Patients often first notice this when looking at things like miniblinds in their home or telephone poles while driving. There may also be central scotomas, shadows or missing areas of vision
- Slow recovery of visual function after exposure to bright light (photostress test)
- Visual acuity drastically decreasing (two levels or more), e.g.: 20/20 to 20/80
- Blurred vision: Those with nonexudative macular degeneration may be asymptomatic or notice a gradual loss of central vision, whereas those with exudative macular degeneration often notice a rapid onset of vision loss (often caused by leakage and bleeding of abnormal blood vessels).
- Trouble discerning colors, specifically dark ones from dark ones and light ones from light ones
- A loss in contrast sensitivity
Macular degeneration by itself will not lead to total blindness. For that matter, only a very small number of people with visual impairment are totally blind. In almost all cases, some vision remains, mainly peripheral. Other complicating conditions may possibly lead to such an acute condition (severe stroke or trauma, untreated glaucoma, etc.), but few macular degeneration patients experience total visual loss.
The area of the macula comprises only about 2.1% of the retina, and the remaining 97.9% (the peripheral field) remains unaffected by the disease. Even though the macula provides such a small fraction of the visual field, almost half of the visual cortex is devoted to processing macular information.
The loss of central vision profoundly affects visual functioning. It is quite difficult, for example, to read without central vision. Pictures that attempt to depict the central visual loss of macular degeneration with a black spot do not really do justice to the devastating nature of the visual loss. This can be demonstrated by printing letters six inches high on a piece of paper and attempting to identify them while looking straight ahead and holding the paper slightly to the side. Most people find this difficult to do.
Spectacles or RGP contact lenses can be used to manage the astigmatism. when the condition worsens, surgical correction may be required.
Drusen, from the German word for "node" or "geode" (singular, "Druse"), are tiny yellow or white accumulations of extracellular material that build up between Bruch's membrane and the retinal pigment epithelium of the eye. The presence of a few small ("hard") drusen is normal with advancing age, and most people over 40 have some hard drusen. However, the presence of larger and more numerous drusen in the macula is a common early sign of age-related macular degeneration (AMD).
Corneal ectatic disorders or corneal ectasia are a group of uncommon, noninflammatory, eye disorders characterised by bilateral thinning of the central, paracentral, or peripheral cornea.
- Keratoconus, a progressive, noninflammatory, bilateral, asymmetric disease, characterized by paraxial stromal thinning and weakening that leads to corneal surface distortion.
- Keratoglobus, a rare noninflammatory corneal thinning disorder, characterised by generalised thinning and globular protrusion of the cornea.
- Pellucid marginal degeneration, a bilateral, noninflammatory disorder, characterized by a peripheral band of thinning of the inferior cornea.
- Posterior keratoconus, a rare condition, usually congenital, which causes a nonprogressive thinning of the inner surface of the cornea, while the curvature of the anterior surface remains normal. Usually only a single eye is affected.
- Post-LASIK ectasia, a complication of LASIK eye surgery.
- Terrien's marginal degeneration, a painless, noninflammatory, unilateral or asymmetrically bilateral, slowly progressive thinning of the peripheral corneal stroma.
This is a partial list of human eye diseases and disorders.
The World Health Organization publishes a classification of known diseases and injuries, the International Statistical Classification of Diseases and Related Health Problems, or ICD-10. This list uses that classification.