Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Occasionally, there is only the one single umbilical artery (SUA) present in the umbilical cord. Approximately this affects between 1 in 100 and 1 in 500 pregnancies, making it the most common umbilical abnormality. It is more common in multiple births. Its cause is not known.
Most cords have one vein and two arteries. The vein carries oxygenated blood from the placenta to the baby and the arteries carry deoxygenated blood from the baby to the placenta. In approximately 1% of pregnancies there are only two vessels —usually a single vein and single artery. In about 75% of those cases, the baby is entirely normal and healthy and the missing artery isn't missed at all. One artery can support a pregnancy and does not necessarily indicate problems. For the other 25%, a 2-vessel cord is a sign that the baby has other abnormalities—sometimes life-threatening and sometimes not. SUA does increase the risk of the baby having cardiac, skeletal, intestinal or renal problems. Babies with SUA may have a higher likelihood of having other congenital abnormalities, especially of the heart. However, additional testing (high level ultrasound scans) can rule out many of these abnormalities prior to birth and alleviate parental anxiety. Echocardiograms of the fetus may be advised to ensure the heart is functioning properly. Genetic counseling may be useful, too, especially when weighing the pros and cons of more invasive procedures such as chorionic villus sampling and amniocentesis.
Although the presence of an SUA is a risk factor for additional complications, most fetuses with the condition will not experience other problems, either in utero or after birth. Especially encouraging are cases in which no other soft markers for congenital abnormalities are visible via ultrasound. Prior to ultrasound technology, the only method for determining the presence of a SUA was at birth, following an examination of the placenta. Given that the vast majority of expectant mothers do not receive the kind of advanced ultrasound scanning required to confirm SUA in utero, most cases may never be detected antenatally even today.
Doctors and midwives often suggest parents take the added precaution of having regular growth scans near term to rule out intrauterine growth restriction, which can happen on occasion and warrant intervention. Yet the majority of growth restricted infants with the abnormality also have other defects. Finally, neonates with the finding may also have a higher occurrence of renal problems, therefore close examination of the infant may be warranted shortly after birth. Among SUA infants, there is a slightly elevated risk for post-natal urinary infections.
It may be associated with Edwards syndrome.
Twin reversed arterial perfusion sequence—also called TRAP sequence, TRAPS, or acardiac twinning—is a rare complication of monochorionic twin pregnancies. It is a severe variant of twin-to-twin transfusion syndrome (TTTS). The twins' blood systems are connected instead of independent. One twin, called the "acardiac twin" or "TRAP fetus", is severely malformed. The heart is missing or deformed, hence the name acardiac, as are the upper structures of the body . The legs may be partially present or missing, and internal structures of the torso are often poorly formed. The other twin is usually normal in appearance. The normal twin, called the "pump twin", drives blood through both fetuses. It is called "reversed arterial perfusion" because in the acardiac twin the blood flows in a reversed direction.
TRAP sequence occurs in 1% of monochorionic twin pregnancies and in 1 in 35,000 pregnancies overall.
Twin-to-twin transfusion syndrome (TTTS), also known as feto-fetal transfusion syndrome (FFTS) and twin oligohydramnios-polyhydramnios sequence (TOPS) is a complication of disproportionate blood supply, resulting in high morbidity and mortality. It can affect monochorionic multiples, that is, multiple pregnancies where two or more fetuses share a chorion and hence a single placenta. Severe TTTS has a 60–100% mortality rate.
The acardiac twin is a parasitic twin that fails to properly develop a heart, and therefore generally does not develop the upper structures of the body. The parasitic twin, little more than a torso with or without legs, receives its blood supply from the host twin by means of an umbilical cord-like structure (which often only has 2 blood vessels, instead of 3), much like a fetus in fetu, except the acardiac twin is outside the host twin's body. Although the reason is not fully understood, it is apparent that deoxygenated blood from the pump twin is perfused to the acardiac twin. The acardiac twin grows along with the pump twin, but due to inadequate oxygenation it is unable to develop the structures necessary for life, and presents with dramatic deformities.
Although no two acardiac twins are alike, twins with this disorder are grouped into 4 classes: Acephalus, anceps, acormus, and amorphus.
- Acephalus – The most common type, lacking a head, though it may have arms. Thoracic organs are generally absent, and disorganized & unidentifiable tissues take their place.
- Anceps – The acardius has most body parts, including a head with face and incomplete brain. Organs, though present, are crudely formed.
- Acormus – This type has no apparent body and the umbilical cord is seemingly attached to the neck, but x-rays or dissection reveal thoracic structures in the apparent head. One had a leg apparently attached to the head. This may be due to embryopathy degenerating a once normal embryo.
- Amorphus – This extreme form not only lacks a head and limbs, but also any internal organs, and consists of tissues with blood vessels branching from the umbilical cord. Some may only be stem cell tumors.
The acardiac twin may also be described as a "hemiacardius", which has an incompletely formed heart, or a "holoacardius", in which the heart is not present at all.
The first sign of umbilical cord prolapse is usually a sudden decrease in fetal heart rate that is severe and does not immediately resolve. On a fetal heart tracing, this would usually look like moderate to severe variable decelerations. Occasionally, the cord can be seen or felt on vaginal examination, particularly with overt cord prolapse.
There are three types of umbilical prolapse that can occur:
- overt umbilical cord prolapse: descent of the umbilical cord past the presenting fetal part. In this case, the cord is through the cervix and into or beyond the vagina. Overt umbilical cord prolapse requires rupture of membranes. This is the most common type of cord prolapse.
- occult umbilical prolapse: descent of the umbilical cord alongside the presenting fetal part, but has not advanced past the presenting fetal part. Occult umbilical prolapse can occur with both intact or ruptured membranes.
- funic (cord) presentation: presence of the umbilical cord between the presenting fetal part and fetal membranes. In this case, the cord has not passed the opening of the cervix. In funic presentation, the membranes are not yet ruptured.
Patients with mesenteric, or intestinal FMD, may experience abdominal pain after eating or weight loss. FMD within the extremities may cause claudication or may be detectable by bruits. If the lower limb arteries are affected, the patient may present with cold legs or evidence of distal embolic disease. FMD present in the subclavian artery may cause arm weakness, parenthesis, claudication, and subclavial steal syndrome.
Vasa praevia, also spelled vasa previa, is a condition in which babies' blood vessels cross or run near the internal opening of the uterus. These vessels are at risk of rupture when the supporting membranes rupture, as they are unsupported by the umbilical cord or placental tissue.
Risk factors include in vitro fertilization.
Vasa praevia occurs in about 0.6 per 1000 pregnancies. The term "vasa previa" is derived from the Latin; "vasa" means vessels and "previa" comes from "pre" meaning "before" and "via" meaning "way". In other words, vessels lie before the baby in the birth canal and in the way.
Placental insufficiency or utero-placental insufficiency is the failure of the placenta to deliver sufficient nutrients to the fetus during pregnancy, and is often a result of insufficient blood flow to the placenta. The term is also sometimes used to designate late decelerations of fetal heart rate as measured by electronic monitoring, even if there is no other evidence of reduced blood flow to the placenta, normal uterine blood flow rate being 600mL/min.
The carotid and vertebral arteries are most commonly affected. Middle and distal regions of the internal carotid arteries are frequently involved. Patients with FMD in the carotid arteries typically present around 50 years of age. Symptoms of craniocervical involvement include headaches (mostly migraine), pulsatile tinnitus, dizziness, and neck pain, although patients are often asymptomatic. On physical examination, one may detect neurological symptoms secondary to a stroke or transient ischemic attack (TIA), a bruit over an affected artery, and diminished distal pulses. Complications of cerebrovascular FMD include TIA, ischemic stroke, Horner syndrome, or subarachnoid hemorrhage.
There are no signs during pregnancy. About sixty percent of infants with gastroschisis are born prematurely. At birth, the baby will have a relatively small (<4 cm) hole in the abdominal wall, usually just to the right of the belly button. Some of the intestines are usually outside the body, passing through this opening. In rare circumstances, the liver and stomach may also come through the abdominal wall. After birth these organs are directly exposed to air.
Placental insufficiency can be induced experimentally by bilateral uterine artery ligation of the pregnant rat.
The following characteristics of placentas have been said to be associated with placental insufficiency, however all of them occur in normal healthy placentas and full term healthy births, so none of them can be used to accurately diagnose placental insufficiency:
- Abnormally thin placenta (less than 1 cm)
- Circumvallate placenta (1% of normal placentas)
- Amnion cell metaplasia, (amnion nodosum) (present in 65% of normal placentas)
- Increased syncytial knots
- Calcifications
- Infarcts due to focal or diffuse thickening of blood vessels
- Villi capillaries occupying about 50% of the villi volume or when <40% of capillaries are on the villous periphery
Placental insufficiency should not be confused with complete placental abruption, in which the placenta separates off the uterine wall, which immediately results in no blood flow to the placenta, which leads to immediate fetal demise. In the case of a marginal, incomplete placental abruption of less than 50%, usually weeks of hospitalization precedes delivery and outcomes are not necessarily affected by the partial abruption.
Gastroschisis is a birth defect in which the baby's intestines extend outside of the body through a hole next to the belly button. The size of the hole is variable, and other organs including the stomach and liver may also occur outside the baby's body. Complications may include feeding problems, prematurity, intestinal atresia, and intrauterine growth retardation.
The cause is typically unknown. Rates are higher in babies born to mothers who smoke, drink alcohol, or are younger than 20 years old. Ultrasounds during pregnancy may make the diagnosis. Otherwise diagnosis occurs at birth. It differs from omphalocele in that there is no covering membrane over the intestines.
Treatment involves surgery. This typically occurs shortly after birth. In those with large defects the exposed organs may be covered with a special material and slowly moved back into the abdomen. The condition affects about 4 per 10,000 newborns. Rates of the condition appear to be increasing.
Velamentous cord insertion is an abnormal condition during pregnancy. Normally, the umbilical cord inserts into the middle of the placenta as it develops. In velamentous cord insertion, the umbilical cord inserts into the fetal membranes (choriamniotic membranes), then travels within the membranes to the placenta (between the amnion and the chorion). The exposed vessels are not protected by Wharton's jelly and hence are vulnerable to rupture. Rupture is especially likely if the vessels are near the cervix, in which case they may rupture in early labor, likely resulting in a stillbirth. This is a serious condition called vasa previa. Not every pregnancy with a velamentous cord insertion results in vasa previa, only those in which the blood vessels are near the cervix.
When a velamentous cord insertion is discovered, the obstetrician will monitor the pregnancy closely for the presence of vasa previa. If the blood vessels are near the cervix, the baby will be delivered via cesarean section as early as 35 weeks to prevent the mother from going into labor, which is associated with a high infant mortality. Early detection can reduce the need for emergency cesarean sections.
The sac, which is formed from an outpouching of peritoneum, protrudes in the midline, through the umbilicus (navel).
It is normal for the intestines to protrude from the abdomen, into the umbilical cord, until about the tenth week of pregnancy, after which they return to inside the fetal abdomen.
The omphalocele can be mild, with only a small loop of intestines present outside the abdomen, or severe, containing most of the abdominal organs. In severe cases surgical treatment is made more difficult because the infant's abdomen is abnormally small, having had no need to expand to accommodate the developing organs.
Larger omphalocele are associated with a higher risk of cardiac defects.
-Transposition of the great arteries (d-Transposition of the great arteries, dextro-TGA, or d-TGA), sometimes also referred to as complete transposition of the great arteries, is a birth defect in the large arteries of the heart. The primary arteries (the aorta and the pulmonary artery) are d.
It is called a cyanotic congenital heart defect (CHD) because the newborn infant turns blue from lack of oxygen.
In segmental analysis, this condition is described as with , or just ventriculoarterial discordance.
d-TGA is often referred to simply as transposition of the great arteries (TGA); however, TGA is a more general term which may also refer to levo-transposition of the great arteries (l-TGA).
Another term commonly used to refer to both d-TGA and l-TGA is transposition of the great vessels (TGV), although this term might have an even broader meaning than TGA.
Additional symptoms include:
- anencephaly (failure of major sections of the brain to form)
- encephalocele (cranial contents protrudes from the skull)
- cyclopia (the two eye cavities fuse into one)
- agnathia
- cleft palate
- arthrogryposis
- clubfeet
- holoprosencephaly
- spina bifida
- low-set ears
- pulmonary hypoplasia
- omphalocele
- gastroschisis
- cardiovascular disorders
- diaphragmatic hernias
- gastrointestinal atresia
- single umbilical artery
- renal abnormalities
- genu recurvatum
- hydramnios
A staging system proposed by fetal surgeon Dr. Ruben Quintero is commonly used to classify the severity of TTTS.
Stage I: A small amount of amniotic fluid (oligohydramnios) is found around the donor twin and a large amount of amniotic fluid (polyhydramnios) is found around the recipient twin.
Stage II: In addition to the description above, the ultrasound is not able to identify the bladder in the donor twin.
Stage III: In addition to the characteristics of Stages I and II, there is abnormal blood flow in the umbilical cords of the twins.
Stage IV: In addition to all of the above findings, the recipient twin has swelling under the skin and appears to be experiencing heart failure (fetal hydrops).
Stage V: In addition to all of the above findings, one of the twins has died. This can happen to either twin. The risk to either the donor or the recipient is roughly equal & is quite high in Stage II or higher TTTS.
The Quintero staging does not provide information about prognosis, and other staging systems have been proposed.
Omphalocele, also spelled omphalocoele, is a rare abdominal wall defect in which the intestines, liver, and occasionally other organs remain outside of the abdomen in a sac because of failure of normal return of intestines and other contents back to abdominal cavity during around ninth week of intrauterine development.
Omphalocele occurs in 1/4,000 births and is associated with a high rate of mortality (25%) and severe malformations, such as cardiac anomalies (50%), neural tube defect(40%), exstrophy of bladder and Beckwith Wiedemann syndrome. Approximately 15% of live-born infants with omphalocele have chromosomal abnormalities. About 30% of infants with an omphalocele have other congenital abnormalities.
Renal (kidney) defects are seen in approximately 50 percent of patients with VACTERL association. In addition, up to 35 percent of patients with VACTERL association have a single umbilical artery (there are usually two arteries and one vein) which is often associated with additional kidney or urologic problems. Renal abnormalities in VACTERL association can be severe, with incomplete formation of one or both kidneys or urologic abnormalities such as obstruction of outflow of urine from the kidneys or severe reflux (backflow) of urine into the kidneys from the bladder. These problems can cause kidney failure early in life and may require kidney transplant. Many of these problems can be corrected surgically before any damage can occur.
The following features are observed with VACTERL association:
- V - Vertebral anomalies
- A - Anorectal malformations
- C - Cardiovascular anomalies
- T - Tracheoesophageal fistula
- E - Esophageal atresia
- R - Renal (Kidney) and/or radial anomalies
- L - Limb defects
Although it was not conclusive whether VACTERL should be defined by at least two or three component defects, it is typically defined by the presence of at least three of the above congenital malformations.
Due to the low oxygen saturation of the blood, cyanosis will appear in areas: around the mouth and lips, fingertips, and toes; these areas are furthest from the heart, and since the circulated blood is not fully oxygenated to begin with, very little oxygen reaches the peripheral arteries. A d-TGA baby will exhibit indrawing beneath the ribcage and "comfortable tachypnea" (rapid breathing); this is likely a homeostatic reflex of the autonomic nervous system in response to hypoxic hypoxia. The infant will be easily fatigued and may experience weakness, particularly during feeding or playing; this interruption to feeding combined with hypoxia can cause failure to thrive. If d-TGA is not diagnosed and corrected early on, the infant may eventually experience syncopic episodes and develop clubbing of the fingers and toes.
On cardiotocography (CTG), umbilical cord compression can present with variable decelerations in fetal heart rate.
Persistent truncus arteriosus (or Patent truncus arteriosus or Common arterial trunk), is a rare form of congenital heart disease that presents at birth. In this condition, the embryological structure known as the truncus arteriosus fails to properly divide into the pulmonary trunk and aorta. This results in one arterial trunk arising from the heart and providing mixed blood to the coronary arteries, pulmonary arteries, and systemic circulation.
A breech birth occurs when a baby is born bottom first instead of head first. Around 3-5% of pregnant women at term (37–40 weeks pregnant) will have a breech baby.
Most babies in the breech position are born by a caesarean section because it is seen as safer than being born vaginally.
As most breech babies are delivered by caesarean section in developed countries, doctors and midwives may lose the skills required to safely assist women giving birth to a breech baby vaginally. Delivering all breech babies by caesarean section in developing countries may be very difficult to implement or even impossible as there are not always resources available to provide this service.