Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
The side effects of penicillin are bodily responses to penicillin and closely related antibiotics that do not relate directly to its effect on bacteria. A side effect is an effect that is not intended with normal dosaging. Some of these reactions are visible and some occur in the body's organs or blood. Penicillins are a widely-used group of medications that are effective for the treatment of a wide variety of bacterial infections in human adults and children as well as other species. Some side effects are predictable, of which some are common but not serious, some are uncommon and serious and others are rare. The route of administration of penicillin can have an effect on the development of side effects. An example of this is irritation and inflammation that develops at a peripheral infusion site when penicillin is administered intravenously. In addition, penicillin is available in different forms. There are different penicillin medications (penicillin G benzathine, penicillin G potassium, penicillin G procaine, and penicillin V) as well as a number of β-lactam antibiotics derived from penicillin (e.g. amoxicillin) generally also referred to as "penicillin".
Side effects may only last for a short time and then go away. Side effects can be relieved in some cases with non pharmacological treatment. Some side effects require treatment to correct potentially serious and sometimes fatal reactions to penicillin. Penicillin has not been found to cause birth defects.
Common adverse drug reactions (≥ 1% of people) associated with use of the penicillins include diarrhoea, hypersensitivity, nausea, rash, neurotoxicity, urticaria, and superinfection (including candidiasis). Infrequent adverse effects (0.1–1% of people) include fever, vomiting, erythema, dermatitis, angioedema, seizures (especially in people with epilepsy), and pseudomembranous colitis.
Penicillin (PCN or pen) is a group of antibiotics which include penicillin G (intravenous use), penicillin V (use by mouth), procaine penicillin, and benzathine penicillin (intramuscular use). Penicillin antibiotics were among the first medications to be effective against many bacterial infections caused by staphylococci and streptococci. Penicillins are still widely used today, though many types of bacteria have developed resistance following extensive use.
About 10% of people report that they are allergic to penicillin; however, up to 90% of this group may not actually be allergic. Serious allergies only occur in about 0.03%. All penicillins are β-lactam antibiotics.
Penicillin was discovered in 1928 by Scottish scientist Alexander Fleming. People began using it to treat infections in 1942. There are several enhanced penicillin families which are effective against additional bacteria; these include the antistaphylococcal penicillins, aminopenicillins and the antipseudomonal penicillins. They are derived from "Penicillium" fungi.
The term "penicillin" is often used generically to refer to benzylpenicillin (penicillin G, the original penicillin found in 1928), procaine benzylpenicillin (procaine penicillin), benzathine benzylpenicillin (benzathine penicillin), and phenoxymethylpenicillin (penicillin V). Procaine penicillin and benzathine penicillin have the same antibacterial activity as benzylpenicillin but act for a longer period of time. Phenoxymethylpenicillin is less active against gram-negative bacteria than benzylpenicillin. Benzylpenicillin, procaine penicillin and benzathine penicillin can be given by intravenous or intramuscular injections, but phenoxymethylpenicillin can be given by mouth because of its acidic stability.
Antibiotic misuse, sometimes called antibiotic abuse or antibiotic overuse, refers to the misuse or overuse of antibiotics, with potentially serious effects on health. It is a contributing factor to the development of antibiotic resistance, including the creation of multidrug-resistant bacteria, informally called "super bugs": relatively harmless bacteria (such as staphylococcus, enterococcus and acinetobacter) can develop resistance to multiple antibiotics and cause life-threatening infections.
Treatment usually involves adrenaline (epinephrine), antihistamines, and corticosteroids.
If the entire body is involved, then anaphylaxis can take place, which is an acute, systemic reaction that can prove fatal.
Idiosyncratic drug reactions, also known as type B reactions, are drug reactions that occur rarely and unpredictably amongst the population. This is not to be mistaken with idiopathic, which implies that the cause is not known. They frequently occur with exposure to new drugs, as they have not been fully tested and the full range of possible side-effects have not been discovered; they may also be listed as an adverse drug reaction with a drug, but are extremely rare.
Some patients have multiple-drug intolerance. Patients who have multiple idiopathic effects that are nonspecific are more likely to have anxiety and depression.
Idiosyncratic drug reactions appear to not be concentration dependent. A minimal amount of drug will cause an immune response, but it is suspected that at a low enough concentration, a drug will be less likely to initiate an immune response.
Some examples:
- Allergic asthma
- Allergic conjunctivitis
- Allergic rhinitis ("hay fever")
- Anaphylaxis
- Angioedema
- Urticaria (hives)
- Eosinophilia
- Penicillin allergy
- Cephalosporin allergy
- Food allergy
- Sweet itch
A subset of children with acute, rapid-onset of tic disorders and obsessive compulsive disorder (OCD) are hypothesized to be due to an autoimmune response to group A beta-hemolytic streptococcal infection (PANDAS).
Post-streptococcal glomerulonephritis (PSGN) is an uncommon complication of either a strep throat or a streptococcal skin infection. It is classified as a type III hypersensitivity reaction. Symptoms of PSGN develop within 10 days following a strep throat or 3 weeks following a GAS skin infection. PSGN involves inflammation of the kidney. Symptoms include pale skin, lethargy, loss of appetite, headache, and dull back pain. Clinical findings may include dark-colored urine, swelling of different parts of the body (edema), and high blood pressure. Treatment of PSGN consists of supportive care.
Anaphylaxis typically presents many different symptoms over minutes or hours with an average onset of 5 to 30 minutes if exposure is intravenous and 2 hours if from eating food. The most common areas affected include: skin (80–90%), respiratory (70%), gastrointestinal (30–45%), heart and vasculature (10–45%), and central nervous system (10–15%) with usually two or more being involved.
Respiratory symptoms and signs that may be present include shortness of breath, wheezes, or stridor. The wheezing is typically caused by spasms of the bronchial muscles while stridor is related to upper airway obstruction secondary to swelling. Hoarseness, pain with swallowing, or a cough may also occur.
Pneumococcal infection is an infection caused by the bacterium "Streptococcus pneumoniae". "S. pneumoniae" is a common member of the bacterial flora colonizing the nose and throat of 5–10% of healthy adults and 20–40% of healthy children. However, it is also the cause of significant disease being a leading cause of pneumonia, bacterial meningitis, and sepsis. The World Health Organization estimate that in 2005 pneumococcal infections were responsible for the death of 1.6 million children worldwide.
Among the signs of subacute bacterial endocarditis are:
- Malaise
- Weakness
- Excessive sweat
- Fever
Drug resistance is the reduction in effectiveness of a medication such as an antimicrobial or an antineoplastic in curing a disease or condition. The term is used in the context of resistance that pathogens or cancers have "acquired", that is, resistance has evolved. Antimicrobial resistance and antineoplastic resistance challenge clinical care and drive research. When an organism is resistant to more than one drug, it is said to be multidrug-resistant. Even the immune system of an organism is in essence a drug delivery system, albeit endogenous, and faces the same arms race problems as external drug delivery.
The development of antibiotic resistance in particular stems from the drugs targeting only specific bacterial molecules (almost always proteins). Because the drug is "so" specific, any mutation in these molecules will interfere with or negate its destructive effect, resulting in antibiotic resistance. Furthermore there is mounting concern over the abuse of antibiotics in the farming of livestock, which in the European Union alone accounts for three times the volume dispensed to humans – leading to development of super-resistant bacteria.
Bacteria are capable of not only altering the enzyme targeted by antibiotics, but also by the use of enzymes to modify the antibiotic itself and thus neutralise it. Examples of target-altering pathogens are "Staphylococcus aureus", vancomycin-resistant enterococci and macrolide-resistant "Streptococcus", while examples of antibiotic-modifying microbes are "Pseudomonas aeruginosa" and aminoglycoside-resistant "Acinetobacter baumannii".
In short, the lack of concerted effort by governments and the pharmaceutical industry, together with the innate capacity of microbes to develop resistance at a rate that outpaces development of new drugs, suggests that existing strategies for developing viable, long-term anti-microbial therapies are ultimately doomed to failure. Without alternative strategies, the acquisition of drug resistance by pathogenic microorganisms looms as possibly one of the most significant public health threats facing humanity in the 21st century.
Resistance to chemicals is only one aspect of the problem, another being resistance to physical factors such as temperature, pressure, sound, radiation and magnetism, and not discussed in this article, but found at Physical factors affecting microbial life.
The following is a list of common signs and symptoms found with neonatal meningitis.
- Fever
- poor appetite
- anterior fontanelle bulging
- seizure
- jitteriness
- dyspnea
- irritability
- anorexia
- vomiting
- diarrhea
- abdominal distention (increase in abdominal size)
- neck rigidity
- cyanosis
- jaundice
- and sunset eyes (downward gaze of the eyes)
- abnormal body temperature (hypo-or hyperthermia)
- change of activity (lethargy or irritability)
Unfortunately these symptoms are unspecific and may point to many different conditions.
GBS is found in the gastrointestinal and genitourinary tract of humans. In different studies, GBS vaginal colonization rate ranges from 4 to 36%, with most studies reporting rates over 20%. These variations in the reported prevalence of asymptomatic (presenting no symptoms of disease) colonization could be related to the different detection methods used, and differences in populations studied.
Though GBS is an asymptomatic colonizer of the gastrointestinal human tract in up to 30% of otherwise healthy adults, including pregnant women,
this opportunistic harmless bacterium can, in some circumstances, cause severe invasive infections.
Clostridial necrotizing enteritis (CNE), also called enteritis necroticans and pigbel, is an often fatal type of food poisoning caused by a β-toxin of "Clostridium perfringens", Type C. It occurs in some developing countries, but was also documented in Germany following World War II. The toxin is normally inactivated by certain proteolytic enzymes and by normal cooking, but when these protections are impeded, the disease emerges.
In humans, "Erysipelothrix rhusiopathiae" infections most commonly present in a mild cutaneous form known as erysipeloid or fish poisoning. "E. rhusiopathiae" can cause an indolent cellulitis, more commonly in individuals who handle fish and raw meat. It gains entry typically by abrasions in the hand. Bacteremia and endocarditis are uncommon but serious sequelae. Due to the rarity of reported human cases, "E. rhusiopathiae" infections are frequently misidentified at presentation.
"S. pneumoniae" is responsible for 15–50% of all episodes of community acquired pneumonia, 30–50% of all cases of acute otitis media, and a significant proportion of bloodstream infections and bacterial meningitis.
As estimated by WHO in 2005 it killed about 1.6 million children every year worldwide with 0.7–1 million of them being under the age of five. The majority of these deaths were in developing countries.
Antimicrobial resistance (AMR) is the ability of a microbe to resist the effects of medication previously used to treat them. The term includes the more specific "antibiotic resistance", which applies only to bacteria becoming resistant to antibiotics. Resistant microbes are more difficult to treat, requiring alternative medications or higher doses, both of which may be more expensive or more toxic. Microbes resistant to multiple antimicrobials are called multidrug resistant (MDR); or sometimes superbugs.
Resistance arises through one of three mechanisms: natural resistance in certain types of bacteria, genetic mutation, or by one species acquiring resistance from another. All classes of microbes can develop resistance: fungi develop antifungal resistance, viruses develop antiviral resistance, protozoa develop antiprotozoal resistance, and bacteria develop antibiotic resistance. Resistance can appear spontaneously because of random mutations; or more commonly following gradual buildup over time.
Preventive measures include only using antibiotics when needed, thereby stopping misuse of antibiotics or antimicrobials. Narrow-spectrum antibiotics are preferred over broad-spectrum antibiotics when possible, as effectively and accurately targeting specific organisms is less likely to cause resistance. For people who take these medications at home, education about proper use is essential. Health care providers can minimize spread of resistant infections by use of proper sanitation and hygiene, including handwashing and disinfecting between patients, and should encourage the same of the patient, visitors, and family members.
Rising drug resistance is caused mainly by use of antimicrobials in humans and other animals, and spread of resistant strains between the two. Antibiotics increase selective pressure in bacterial populations, causing vulnerable bacteria to die; this increases the percentage of resistant bacteria which continue growing. With resistance to antibiotics becoming more common there is greater need for alternative treatments. Calls for new antibiotic therapies have been issued, but new drug development is becoming rarer.
Antimicrobial resistance is on the rise. Estimates are that 700,000 to several million deaths result per year. Each year in the United States, at least 2 million people become infected with bacteria that are resistant to antibiotics and at least 23,000 people die as a result. There are public calls for global collective action to address the threat include proposals for international treaties on antimicrobial resistance. Worldwide antibiotic resistance is not fully mapped, but poorer countries with weak healthcare systems are more affected.
Though GBS colonization is asymptomatic and, in general, does not cause problems, it can sometimes cause serious illness for the mother and the baby during gestation and after delivery. GBS infections in the mother can cause chorioamnionitis (intra-amniotic infection or severe infection of the placental tissues) infrequently, and postpartum infections (after birth). GBS urinary tract infections may induce labour and cause premature delivery (preterm birth) and miscarriage.
The Gonorrhea bacterium Neisseria gonorrhoeae has developed antibiotic resistance to many antibiotics.
The bacteria was first identified in 1879, although some Biblical scholars believe that references to the disease can be found as early as Parshat Metzora of the Old Testament.
In the 1940s effective treatment with penicillin became available, but by the 1970s resistant strains predominated. Resistance to penicillin has developed through two mechanisms: chromasomally mediated resistance (CMRNG) and penicillinase-mediated resistance (PPNG). CMRNG involves step wise mutation of penA, which codes for the penicillin-binding protein (PBP-2); mtr, which encodes an efflux pump that removes penicillin from the cell; and penB, which encodes the bacterial cell wall porins. PPNG involves the acquisition of a plasmid-borne beta-lactamase. "N. gonorrheoea" has a high affinity for horizontal gene transfer, and as a result, the existence of any strain resistant to a given drug could spread easily across strains.
Fluoroquinolones were a useful next-line treatment until resistance was achieved through efflux pumps and mutations to the gyrA gene, which encodes DNA gyrase. Third-generation cephalosporins have been used to treat gonorrhoea since 2007, but resistant strains have emerged. As of 2010, the recommended treatment is a single 250 mg intramuscular injection of ceftriaxone, sometimes in combination with azithromycin or doxycycline. However, certain strains of "N. gonorrhoeae" can be resistant to antibiotics usually that are normally used to treat it. These include: cefixime (an oral cephalosporin), ceftriaxone (an injectable cephalosporin), azithromycin, aminoglycosides, and tetracycline.
Symptoms are different for every person depending on the type of rat-bite fever with which the person is infected. Both spirillary and streptobacillary rat-bite fever have a few individual symptoms, although most symptoms are shared. Streptobacillosis is most commonly found in the United States and spirillary rat-bite fever is generally diagnosed in patients in Africa. Rat-bite symptoms are visually seen in most cases and include inflammation around the open sore. A rash can also spread around the area and appear red or purple. Other symptoms associated with streptobacillary rat-bite fever include chills, fever, vomiting, headaches, and muscle aches. Joints can also become painfully swollen and pain can be experienced in the back. Skin irritations such as ulcers or inflammation can develop on the hands and feet. Wounds heal slowly, so symptoms possibly come and go over the course of a few months.
Symptoms associated with spirillary rat-bite fever include issues with the lymph nodes, which often swell or become inflamed as a reaction to the infection. The most common locations of lymph node swelling are in the neck, groin, and underarm. Symptoms generally appear within 2 to 10 days of exposure to the infected animal. It begins with the fever and progresses to the rash on the hands and feet within 2 to 4 days. Rash appears all over the body with this form, but rarely causes joint pain.
Subacute bacterial endocarditis (also called endocarditis lenta) is a type of endocarditis (more specifically, infective endocarditis). Subacute bacterial endocarditis can be considered a form of type III hypersensitivity.