Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Genetic changes are related to the following types of collagenopathy, types II and XI.
The system for classifying collagenopathies is changing as researchers learn more about the genetic causes of these disorders.The clinical features of the type II and XI collagenopathies vary among the disorders, but there is considerable overlap. Common signs and symptoms include problems with bone development that can result in short stature, enlarged joints, spinal curvature, and arthritis at a young age. For some people, bone changes can be seen only on X-ray images. Problems with vision and hearing, as well as a cleft palate with a small lower jaw, are common. Some individuals with these disorders have distinctive facial features such as protruding eyes and a flat nasal bridge.
Collagen improperly formed, enough collagen is made but it is defective.
- Bones fracture easily, sometimes even before birth
- Bone deformity, often severe
- Respiratory problems possible
- Short stature, spinal curvature and sometimes barrel-shaped rib cage
- Triangular face
- Loose joints (double-jointed)
- Poor muscle tone in arms and legs
- Discolouration of the sclera (the 'whites' of the eyes are blue)
- Early loss of hearing possible
Type III is distinguished among the other classifications as being the "progressive deforming" type, wherein a neonate presents with mild symptoms at birth and develops the aforementioned symptoms throughout life. Lifespans may be normal, albeit with severe physical handicapping.
Collagen quantity is sufficient but is not of a high enough quality
- Bones fracture easily, especially before puberty
- Short stature, spinal curvature, and barrel-shaped rib cage
- Bone deformity is mild to moderate
- Early loss of hearing
Similar to Type I, Type IV can be further subclassified into types IVA and IVB characterized by absence (IVA) or presence (IVB) of dentinogenesis imperfecta.
The type II and XI collagenopathies are a group of disorders that affect connective tissue, the tissue that supports the body's joints and organs. These disorders are caused by defects in type II or type XI collagen. Collagens are complex molecules that provide structure, strength, and elasticity to connective tissue. Type II and type XI collagen disorders are grouped together because both types of collagen are components of the cartilage found in joints and the spinal column, the inner ear, and the jelly-like substance that fills the eyeball (the vitreous). The type II and XI collagenopathies result in similar clinical features.
Infants with achondrogenesis, type 2 have short arms and legs, a small chest with short ribs, and underdeveloped lungs. Achondrogenesis, type 2 is a subtype of collagenopathy, types II and XI. This condition is also associated with a lack of bone formation (ossification) in the spine and pelvis. Typical facial features include a prominent forehead, a small chin, and, in some cases, an opening in the roof of the mouth (a cleft palate). The abdomen is enlarged, and affected infants often have a condition called hydrops fetalis in which excess fluid builds up in the body before birth. The skull bones may be soft, but they often appear normal on X-ray images. In contrast, bones in the spine (vertebrae) and pelvis do not harden.
Achondrogenesis, type 2 and hypochondrogenesis (a similar skeletal disorder) together affect 1 in 40,000 to 60,000 births. Achondrogenesis, type 2 is one of several skeletal disorders caused by mutations in the "COL2A1" gene. This gene provides instructions for making a protein that forms type II collagen. This type of collagen is found mostly in cartilage and in the clear gel that fills the eyeball (the vitreous). It is essential for the normal development of bones and other tissues that form the body's supportive framework (connective tissues). Mutations in the "COL2A1" gene interfere with the assembly of type II collagen molecules, which prevents bones and other connective tissues from developing properly.
Achondrogenesis, type 2 is considered an autosomal dominant disorder because one copy of the altered gene in each cell is sufficient to cause the condition. The disorder is not passed on to the next generation, however, because affected individuals hardly survive past puberty.
Collagen, type II, alpha 1 (primary osteoarthritis, spondyloepiphyseal dysplasia, congenital), also known as COL2A1, is a human gene that provides instructions for the production of the pro-alpha1(II) chain of type II collagen.
Achondrogenesis is a number of disorders that are the most severe form of congenital chondrodysplasia (malformation of bones and cartilage). These conditions are characterized by a small body, short limbs, and other skeletal abnormalities. As a result of their serious health problems, infants with achondrogenesis are usually born prematurely, are stillborn, or die shortly after birth from respiratory failure. Some infants, however, have lived for a while with intensive medical support.
Researchers have described at least three forms of achondrogenesis, designated as Achondrogenesis type 1A, achondrogenesis type 1B and achondrogenesis type 2. These types are distinguished by their signs and symptoms, inheritance pattern, and genetic cause. Other types of achondrogenesis may exist, but they have not been characterized or their cause is unknown.
Achondrogenesis type 1A is caused by a defect in the microtubules of the Golgi apparatus. In mice, a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210), resulted in defects similar to the human disease. When their DNA was sequenced, human patients with achondrogenesis type 1A also had loss-of-function mutations in GMAP-210. GMAP-210 moves proteins from the endoplasmic reticulum to the Golgi apparatus. Because of the defect, GMAP-210 is not able to move the proteins, and they remain in the endoplasmic reticulum, which swells up. The loss of Golgi apparatus function affects some cells, such as those responsible for forming bone and cartilage, more than others.
Achondrogenesis type 1B is caused by a similar mutation in SLC26A2, which encodes a sulfate transporter.
All types of Griscelli syndrome have distinctive skin and hair coloring.
Type 1 is associated with eurological abnormalities. These include delayed development, intellectual disability, seizures, hypotonia and eye abnormalities.
Type 2 - unlike type 1 - is not associated primary neurological disease but is associated with an uncontrolled T lymphocyte expansion and macrophage activation syndrome. It is often associated with the hemophagocytic syndrome. This latter condition may be fatal in the absence of bone marrow transplantation.
Persons with type 3 have the typical light skin and hair coloring but are otherwise normal.
Platyspondylic lethal skeletal dysplasia, Torrance type is a severe disorder of bone growth. People with this condition have very short arms and legs, a small chest with short ribs, underdeveloped pelvic bones, and unusually short fingers and toes (brachydactyly). This disorder is also characterized by flattened spinal bones (platyspondyly) and abnormal curvature of the spine (lordosis).
As a result of these serious skeletal problems, many infants with platyspondylic lethal skeletal dysplasia, Torrance type are born prematurely, are stillborn, or die shortly after birth from respiratory failure. A few affected people with milder signs and symptoms have lived into adulthood, however.
This condition is one of a spectrum of skeletal disorders caused by mutations in the "COL2A1" gene. This gene provides instructions for making a protein that forms type II collagen. This type of collagen is found mostly in cartilage and in the clear gel that fills the eyeball (the vitreous). It is essential for the normal development of bones and other tissues that form the body's supportive framework (connective tissues).
Mutations in the "COL2A1" gene interfere with the assembly of type II collagen molecules, resulting in a reduced amount of this type of collagen in the body. Instead of forming collagen molecules, the abnormal "COL2A1" protein builds up in cartilage cells (chondrocytes). These changes disrupt the normal development of bones and other connective tissues, leading to the skeletal abnormalities characteristic of platyspondylic lethal skeletal dysplasia, Torrance type.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, an affected person inherits the mutation from one affected parent. Other cases may result from new mutations in the gene. These cases occur in people with no history of the disorder in their family.
frequency:- rare type of cyst
It can occur at any age, mostly between 2nd and 3rd decade of life.
Diameter is 2 to 4 cm
swelling pain maybe present.
intra bony expansions may produce hard bony expansion.
may perforate cortical bones
also it extends to soft tissue
maybe asymptomatic
Acrocephalosyndactylia (or acrocephalosyndactyly) is the common presentation of craniosynostosis and syndactyly.
The calcifying odotogenic cyst or the Gorlin cyst, now known in the WHO Classification of Tumours as the calcifying cystic odontogenic tumor, is a benign odontogenic tumor of cystic type most likely to affect the anterior areas of the jaws. It is most common in people in their second to third decades but can be seen at almost any age. On radiographs, the calcifying odontogenic cyst appears as a unilocular radiolucency (dark area). In one-third of cases, an impacted tooth is involved. Microscopically, there are many cells that are described as "ghost cells", enlarged eosinophilic epithelial cells without nuclei.
Short rib – polydactyly syndrome is a family of four closely related dysplasias:
- I - "Saldino-Noonan type"
- II - "Majewski type"
- III - "Verma-Naumoff type" (associated with DYNC2H1)
- IV - "Beemer-Langer type"
It has several different types:
- type 1 - Apert syndrome
- type 2 - Crouzon syndrome
- type 3 - Saethre-Chotzen syndrome
- type 5 - Pfeiffer syndrome
A related term, "acrocephalopolysyndactyly" (ACPS), refers to the inclusion of polydactyly to the presentation. It also has multiple types:
- type 1 - Noack syndrome; now classified with Pfeiffer syndrome
- type 2 - Carpenter syndrome
- type 3 - Sakati-Nyhan-Tisdale syndrome
- type 4 - Goodman syndrome; now classified with Carpenter syndrome
- type 5 - Pfeiffer syndrome
It has been suggested that the distinction between "acrocephalosyndactyly" versus "acrocephalopolysyndactyly" should be abandoned.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
Different people are affected very differently by this disease. The main manifestation is fluid-filled cysts that grow on the brain and can cause damage that varies depending on their location and severity. Symptoms may manifest early in infancy, or may manifest as late as adulthood. Symptoms associated with autosomal dominant porencephaly type I include migraines, hemiplegia or hemiparesis, seizures, cognitive impairment, strokes, dystonia, speech disorders, involuntary muscle spasms, visual field defects, and hydrocephalus.
Though it is only definitively diagnosed by a genetic test, autosomal dominant porencephaly type I can be suspected if the disease is known to run in the family or if someone shows symptoms. CT scanning or MRI may be useful in indicating a diagnosis. COL4A1 may be mutated in other diseases that need to be distinguished, including brain small vessel disease with hemorrhage and HANAC syndrome. CADASIL syndrome is caused by a mutation in a different gene, but may cause similar symptoms. Sporadic porencephaly is another disorder that can appear similar.
Symptoms(and signs) that are consistent with this disorder are the following:
Phakomatosis pigmentovascularis is subdivided into five types:
- Type 1 PWS + epidermal nevus
- Type 2 (most common): PWS + dermal melanocytosis +/- nevus anemicus
- Type 3: PWS + nevus spilus +/- nevus anemicus
- Type 4: PWS + nevus spilus + dermal melanocytosis +/- nevus anemicus
- Type 5: CMTC (Cutis marmorata telangiectatica congenita) + dermal melanocytosis
They all can contain capillary malformation. Type 2 is the most common and can be associated with granular cell tumor. Some further subdivide each type into categories A & B; with A representing oculocutaneous involvement and subtype B representing extra oculocutaneous involvement. Others have proposed fewer subtypes but currently this rare entity is mostly taught as having five subtypes currently.
Autoimmune polyendocrine syndrome type 2, a form of autoimmune polyendocrine syndrome also known as Schmidt's syndrome, or APS-II, is the most common form of the polyglandular failure syndromes. It is heterogeneous and has not been linked to one gene. Rather, individuals are at a higher risk when they carry a particular human leukocyte antigen (HLA-DQ2, HLA-DQ8 and HLA-DR4). APS-II affects women to a greater degree than men.
Autoimmune polyendocrine syndrome type 1 symptoms and signs include the following:
- Hypoparathyroidism
- Hypogonadism
- Vitiligo
- Alopecia
- Malabsorption
- Anemia
- Cataract
- Adrenal hyperplasia
Phakomatosis pigmentovascularis is a rare neurocutanous condition where there is coexistence of a capillary malformation (port-wine stain) with various melanocytic lesions, including dermal melanocytosis (Mongolian spots), nevus spilus, and nevus of Ota.
Autoimmune polyendocrine syndrome type 1 (APS-1), also known as autoimmune polyendocrinopathy-candidiasis–ectodermal dystrophy/dysplasia (APECED), autoimmune polyglandular syndrome type 1, Whitaker syndrome, or candidiasis-hypoparathyroidism–Addison's disease syndrome, is a subtype of autoimmune polyendocrine syndrome (autoimmune polyglandular syndrome) in which multiple endocrine glands dysfunction as a result of autoimmunity. It is a genetic disorder inherited in autosomal recessive fashion due to a defect in the "AIRE" gene (autoimmune regulator), which is located on chromosome 21 and normally confers immune tolerance.
The signs and symptoms of CDA type III tend to be milder than those of the other types. Most affected individuals do not have hepatosplenomegaly, and iron does not build up in tissues and organs. In adulthood, abnormalities of a specialized tissue at the back of the eye (the retina) can cause vision impairment. Some people with CDA type III also have a blood disorder known as monoclonal gammopathy, which can lead to a cancer of white blood cells (multiple myeloma).
Dentinogenesis imperfecta (DI) is a genetic disorder of tooth development. This condition is a type of dentin dysplasia that causes teeth to be discolored (most often a blue-gray or yellow-brown color) and translucent giving teeth an opalescent sheen. Although genetic factors are the main contributor for the disease, any environmental or systemic upset that impedes calcification or metabolisation of calcium can also result in anomalous dentine.
Consequently, teeth are also weaker than normal, making them prone to rapid wear, breakage, and loss. These problems can affect both primary (deciduous) teeth and permanent teeth. This condition is inherited in an autosomal dominant pattern, as a result of mutations on chromosome 4q21, in the dentine sialophosphoprotein gene (DSPP). It is one of the most frequently occurring autosomal dominant feature in humans. Dentinogenesis imperfecta affects an estimated 1 in 6,000 to 8,000 people.