Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms of pulmonary fibrosis are mainly:
- Shortness of breath, particularly with exertion
- Chronic dry, hacking coughing
- Fatigue and weakness
- Chest discomfort including chest pain
- Loss of appetite and rapid weight loss
Pulmonary fibrosis is suggested by a history of progressive shortness of breath (dyspnea) with exertion. Sometimes fine inspiratory crackles can be heard at the lung bases on auscultation. A chest x-ray may or may not be abnormal, but high-resolution CT will frequently demonstrate abnormalities.
The most common symptom of pulmonary edema is difficulty breathing, but may include other symptoms such as coughing up blood (classically seen as pink, frothy sputum), excessive sweating, anxiety, and pale skin. Shortness of breath can manifest as orthopnea (inability to lie down flat due to breathlessness) and/or paroxysmal nocturnal dyspnea (episodes of severe sudden breathlessness at night). These are common presenting symptoms of chronic pulmonary edema due to left ventricular failure. The development of pulmonary edema may be associated with symptoms and signs of "fluid overload"; this is a non-specific term to describe the manifestations of left ventricular failure on the rest of the body and includes peripheral edema (swelling of the legs, in general, of the "pitting" variety, wherein the skin is slow to return to normal when pressed upon), raised jugular venous pressure and hepatomegaly, where the liver is enlarged and may be tender or even pulsatile. Other signs include end-inspiratory crackles (sounds heard at the end of a deep breath) on auscultation and the presence of a third heart sound.
The symptoms of pulmonary hypertension include the following:
Less common signs/symptoms include non-productive cough and exercise-induced nausea and vomiting. Coughing up of blood may occur in some patients, particularly those with specific subtypes of pulmonary hypertension such as heritable pulmonary arterial hypertension, Eisenmenger syndrome and chronic thromboembolic pulmonary hypertension. Pulmonary venous hypertension typically presents with shortness of breath while lying flat or sleeping (orthopnea or paroxysmal nocturnal dyspnea), while pulmonary arterial hypertension (PAH) typically does not.
Other typical signs of pulmonary hypertension include an accentuated pulmonary component of the second heart sound, a right ventricular third heart sound, and parasternal heave indicating a hypertrophied right atrium. Signs of systemic congestion resulting from right-sided heart failure include jugular venous distension, ascites, and hepatojugular reflux. Evidence of tricuspid insufficiency and pulmonic regurgitation is also sought and, if present, is consistent with the presence of pulmonary hypertension.
Pulmonary fibrosis (literally "scarring of the lungs") is a respiratory disease in which scars are formed in the lung tissues, leading to serious breathing problems. Scar formation, the accumulation of excess fibrous connective tissue (the process called fibrosis), leads to thickening of the walls, and causes reduced oxygen supply in the blood. As a consequence patients suffer from perpetual shortness of breath.
In some patients the specific cause of the disease can be diagnosed, but in others the probable cause cannot be determined, a condition called idiopathic pulmonary fibrosis. There is no known cure for the scars and damage in the lung due to pulmonary fibrosis.
Pulmonary edema is fluid accumulation in the tissue and air spaces of the lungs. It leads to impaired gas exchange and may cause respiratory failure. It is due to either failure of the left ventricle of the heart to remove blood adequately from the pulmonary circulation (cardiogenic pulmonary edema), or an injury to the lung parenchyma or vasculature of the lung (noncardiogenic pulmonary edema). Treatment is focused on three aspects: firstly improving respiratory function, secondly, treating the underlying cause, and thirdly avoiding further damage to the lung. Pulmonary edema, especially acute, can lead to fatal respiratory distress or cardiac arrest due to hypoxia. It is a cardinal feature of congestive heart failure. The term is from the Greek (oídēma, "swelling"), from οἰδέω (oidéō, "I swell").
Portopulmonary hypertension (PPH) is defined by the coexistence of portal and pulmonary hypertension. PPH is a serious complication of liver disease, present in 0.25 to 4% of all patients suffering from cirrhosis. Once an absolute contraindication to liver transplantation, it is no longer, thanks to rapid advances in the treatment of this condition. Today, PPH is comorbid in 4-6% of those referred for a liver transplant.
PPH presents roughly equally in male and female cirrhotics; 71% female in an American series and 57% male in a larger French series. Typically, patients present in their fifth decade, aged 49 +/- 11 years on average.
In general, PPH is diagnosed 4–7 years after the patient is diagnosed with portal hypertension and in roughly 65% of cases, the diagnosis is actually made at the time of invasive hemodynamic monitoring following anesthesia induction prior to liver transplantation.
Once patients are symptomatic, they present with right heart dysfunction secondary to pulmonary hypertension and its consequent dyspnea, fatigue, chest pain and syncope. Patients tend to have a poor cardiac status, with 60% having stage III-IV NYHA heart failure.
PPH is actually independent of the severity of cirrhosis but may be more common in specific types of cirrhosis, in one series more so in Autoimmune Hepatitis and less in Hepatitis C cirrhosis, while in another it was equally distributed throughout the diagnoses.
Pulmonary hypertension (PH or PHTN) is a condition of increased blood pressure within the arteries of the lungs. Symptoms include shortness of breath, syncope, tiredness, chest pain, swelling of the legs, and a fast heartbeat. The condition may make it difficult to exercise. Onset is typically gradual.
The cause is often unknown. Risk factors include a family history, prior blood clots in the lungs, HIV/AIDS, sickle cell disease, cocaine use, COPD, sleep apnea, living at high altitudes, and problems with the mitral valve. The underlying mechanism typically involves inflammation of the arteries in the lungs. Diagnosis involves first ruling out other potential causes.
There is no cure. Treatment depends on the type of disease. A number of supportive measures such as oxygen therapy, diuretics, and medications to inhibit clotting may be used. Medications specifically for the condition include epoprostenol, treprostinil, iloprost, bosentan, ambrisentan, macitentan, and sildenafil. A lung transplant may be an option in certain cases.
While the exact frequency of the condition is unknown, it is estimated that about 1,000 new cases occur a year in the United States. Females are more often affected than males. Onset is typically between 20 and 60 years of age. It was first identified by Ernst von Romberg in 1891.
Clinically, IPH manifests as a triad of haemoptysis, diffuse parenchymal infiltrates on chest radiographs, and iron deficiency anaemia. It is diagnosed at an average age of 4.5 plus or minus 3.5 years, and it is twice as common in females. The clinical course of IPH is exceedingly variable, and most of the patients continue to have episodes of pulmonary haemorrhage despite therapy. Death may occur suddenly from acute pulmonary haemorrhage or after progressive pulmonary insufficiency resulting in chronic respiratory failure.
Idiopathic pulmonary haemosiderosis (or idiopathic pulmonary hemosiderosis; IPH) is a lung disease of unknown cause that is characterized by alveolar capillary bleeding and accumulation of haemosiderin in the lungs. It is rare, with an incidence between 0.24 and 1.23 cases per million people.
Symptoms of pulmonary embolism are typically sudden in onset and may include one or many of the following: dyspnea (shortness of breath), tachypnea (rapid breathing), chest pain of a "pleuritic" nature (worsened by breathing), cough and hemoptysis (coughing up blood). More severe cases can include signs such as cyanosis (blue discoloration, usually of the lips and fingers), collapse, and circulatory instability because of decreased blood flow through the lungs and into the left side of the heart. About 15% of all cases of sudden death are attributable to PE.
On physical examination, the lungs are usually normal. Occasionally, a pleural friction rub may be audible over the affected area of the lung (mostly in PE with infarct). A pleural effusion is sometimes present that is exudative, detectable by decreased percussion note, audible breath sounds, and vocal resonance. Strain on the right ventricle may be detected as a left parasternal heave, a loud pulmonary component of the second heart sound, and/or raised jugular venous pressure. A low-grade fever may be present, particularly if there is associated pulmonary hemorrhage or infarction.
As smaller pulmonary emboli tend to lodge in more peripheral areas without collateral circulation they are more likely to cause lung infarction and small effusions (both of which are painful), but not hypoxia, dyspnea or hemodynamic instability such as tachycardia. Larger PEs, which tend to lodge centrally, typically cause dyspnea, hypoxia, low blood pressure, fast heart rate and fainting, but are often painless because there is no lung infarction due to collateral circulation. The classic presentation for PE with pleuritic pain, dyspnea and tachycardia is likely caused by a large fragmented embolism causing both large and small PEs. Thus, small PEs are often missed because they cause pleuritic pain alone without any other findings and large PEs often missed because they are painless and mimic other conditions often causing ECG changes and small rises in troponin and BNP levels.
PEs are sometimes described as massive, submassive and nonmassive depending on the clinical signs and symptoms. Although the exact definitions of these are unclear, an accepted definition of massive PE is one in which there is hemodynamic instability such as sustained low blood pressure, slowed heart rate, or pulselessness.
Pulmonary toxicity is the medical name for side effects on the lungs.
Although most cases of pulmonary toxicity in medicine are due to side effects of medicinal drugs, many cases can be due to side effects of radiation (radiotherapy). Other (non-medical) causes of pulmonary toxicity can be chemical compounds and airborne particulate matter.
This has a good prognosis, as it is reversible. Causes include hypoxia, meconium aspiration, and respiratory distress syndrome.
Persistent fetal circulation (also called Persistent Pulmonary Hypertension of the Newborn, PPHN) is a condition caused by a failure in the systemic circulation and pulmonary circulation to convert from the antenatal circulation pattern to the "normal" pattern.
In a fetus, there is high pulmonary vascular resistance and low pulmonary blood flow as the fetus does not use the lungs for oxygen transfer. When the baby is born, the lungs are needed for oxygen transfer and need high blood flow which is encouraged by low pulmonary vascular resistance.
It can be associated with pulmonary hypertension. Because of this, the condition is also widely known as Persistent Pulmonary Hypertension of the Newborn (PPHN).
Side effects on the lungs can be very varied, and can include signs and symptoms that are either clinical, or radiological (i.e., seen on chest X-ray or CT), or both. They can include lung inflammation (pneumonitis), secondary (in this context, indirectly caused) lung infection (pneumonia), lung fibrosis, organising pneumonia (bronchiolitis obliterans organising pneumonia, BOOP), ARDS (acute respiratory distress syndrome), solitary pulmonary mass (even including lung cancer in some cases, mainly in cases of asbestos-related lung disease, but today this is very rare, because asbestos is now completely prohibited by law in most countries), or pulmonary nodule. The diagnosis should be made by a specialist, if possible.
Pulmonary embolism (PE) is a blockage of an artery in the lungs by a substance that has traveled from elsewhere in the body through the bloodstream (embolism). Symptoms of a PE may include shortness of breath, chest pain particularly upon breathing in, and coughing up blood. Symptoms of a blood clot in the leg may also be present such as a red, warm, swollen, and painful leg. Signs of a PE include low blood oxygen levels, rapid breathing, rapid heart rate, and sometimes a mild fever. Severe cases can lead to passing out, abnormally low blood pressure, and sudden death.
PE usually results from a blood clot in the leg that travels to the lung. The risk of blood clots is increased by cancer, prolonged bed rest, smoking, stroke, certain genetic conditions, estrogen-based medication, pregnancy, obesity, and after some types of surgery. A small proportion of cases are due to the embolization of air, fat, or amniotic fluid. Diagnosis is based on signs and symptoms in combination with test results. If the risk is low a blood test known as a D-dimer will rule out the condition. Otherwise a CT pulmonary angiography, lung ventilation/perfusion scan, or ultrasound of the legs may confirm the diagnosis. Together deep vein thrombosis and PE are known as venous thromboembolism (VTE).
Efforts to prevent PE include beginning to move as soon as possible after surgery, lower leg exercises during periods of sitting, and the use of blood thinners after some types of surgery. Treatment is typically with blood thinners such as heparin or warfarin. Often these are recommended for six months or longer. Severe cases may require thrombolysis using medication such as tissue plasminogen activator (tPA), or may require surgery such as a pulmonary thrombectomy. If blood thinners are not appropriate, a vena cava filter may be used.
Pulmonary emboli affect about 430,000 people each year in Europe. In the United States between 300,000 and 600,000 cases occur each year, which results in between 50,000 and 200,000 deaths. Rates are similar in males and females. They become more common as people get older.
The symptoms/signs of pulmonary heart disease (cor pulmonale) can be non-specific and depend on the stage of the disorder, and can include blood backing up into the systemic venous system, including the hepatic vein. As pulmonary heart disease progresses, most individuals will develop symptoms like:
A primary spontaneous pneumothorax (PSP) tends to occur in a young adult without underlying lung problems, and usually causes limited symptoms. Chest pain and sometimes mild breathlessness are the usual predominant presenting features. People who are affected by PSPs are often unaware of potential danger and may wait several days before seeking medical attention. PSPs more commonly occur during changes in atmospheric pressure, explaining to some extent why episodes of pneumothorax may happen in clusters. It is rare for PSPs to cause tension pneumothoraces.
Secondary spontaneous pneumothoraces (SSPs), by definition, occur in individuals with significant underlying lung disease. Symptoms in SSPs tend to be more severe than in PSPs, as the unaffected lungs are generally unable to replace the loss of function in the affected lungs. Hypoxemia (decreased blood-oxygen levels) is usually present and may be observed as cyanosis (blue discoloration of the lips and skin). Hypercapnia (accumulation of carbon dioxide in the blood) is sometimes encountered; this may cause confusion and – if very severe – may result in comas. The sudden onset of breathlessness in someone with chronic obstructive pulmonary disease (COPD), cystic fibrosis, or other serious lung diseases should therefore prompt investigations to identify the possibility of a pneumothorax.
Traumatic pneumothorax most commonly occurs when the chest wall is pierced, such as when a stab wound or gunshot wound allows air to enter the pleural space, or because some other mechanical injury to the lung compromises the integrity of the involved structures. Traumatic pneumothoraces have been found to occur in up to half of all cases of chest trauma, with only rib fractures being more common in this group. The pneumothorax can be occult (not readily apparent) in half of these cases, but may enlarge - particularly if mechanical ventilation is required. They are also encountered in patients already receiving mechanical ventilation for some other reason.
Upon physical examination, breath sounds (heard with a stethoscope) may be diminished on the affected side, partly because air in the pleural space dampens the transmission of sound. Measures of the conduction of vocal vibrations to the surface of the chest may be altered. Percussion of the chest may be perceived as hyperresonant (like a booming drum), and vocal resonance and tactile fremitus can both be noticeably decreased. Importantly, the volume of the pneumothorax can show limited correlation with the intensity of the symptoms experienced by the victim, and physical signs may not be apparent if the pneumothorax is relatively small.
According to the International Labour Office (ILO), PMF requires the presence of large opacity exceeding 1 cm (by x-ray). By pathology standards, the lesion in histologic section must exceed 2 cm to meet the definition of PMF. In PMF, lesions most commonly occupy the upper lung zone, and are usually bilateral. The development of PMF is usually associated with a restrictive ventilatory defect on pulmonary function testing. PMF can be mistaken for bronchogenic carcinoma and vice versa. PMF lesions tend to grow very slowly, so any rapid changes in size, or development of cavitation, should prompt a search for either alternative cause or secondary disease.
Although multiple definitions exist, a tension pneumothorax is generally considered to be present when a pneumothorax (primary spontaneous, secondary spontaneous, or traumatic) leads to significant impairment of respiration and/or blood circulation. Tension pneumothorax tends to occur in clinical situations such as ventilation, resuscitation, trauma, or in patients with lung disease.
The most common findings in people with tension pneumothorax are chest pain and respiratory distress, often with an increased heart rate (tachycardia) and rapid breathing (tachypnea) in the initial stages. Other findings may include quieter breath sounds on one side of the chest, low oxygen levels and blood pressure, and displacement of the trachea away from the affected side. Rarely, there may be cyanosis (bluish discoloration of the skin due to low oxygen levels), altered level of consciousness, a hyperresonant percussion note on examination of the affected side with reduced expansion and decreased movement, pain in the epigastrium (upper abdomen), displacement of the apex beat (heart impulse), and resonant sound when tapping the sternum. This is a medical emergency and may require immediate treatment without further investigations (see below).
Tension pneumothorax may also occur in someone who is receiving mechanical ventilation, in which case it may be difficult to spot as the person is typically receiving sedation; it is often noted because of a sudden deterioration in condition. Recent studies have shown that the development of tension features may not always be as rapid as previously thought. Deviation of the trachea to one side and the presence of raised jugular venous pressure (distended neck veins) are not reliable as clinical signs.
Physiological and symptomatic changes often vary according to the altitude involved.
The Lake Louise Consensus Definition for High-Altitude Pulmonary Edema has set widely used criteria for defining HAPE symptoms:
Symptoms: at least two of:
- Difficulty in breathing (dyspnea) at rest
- Cough
- Weakness or decreased exercise performance
- Chest tightness or congestion
Signs: at least two of:
- Crackles or wheezing (while breathing) in at least one lung field
- Central cyanosis (blue skin color)
- Tachypnea (rapid shallow breathing)
- Tachycardia (rapid heart rate)
The initial cause of HAPE is a shortage of oxygen caused by the lower air pressure at high altitudes.
The mechanisms by which this oxygen shortage causes HAPE are poorly understood, but two processes are believed to be important:
1. Increased pulmonary arterial and capillary pressures (pulmonary hypertension) secondary to hypoxic pulmonary vasoconstriction.
2. An idiopathic non-inflammatory increase in the permeability of the vascular endothelium.
Although higher pulmonary arterial pressures are associated with the development of HAPE, the presence of pulmonary hypertension may not in itself be sufficient to explain the development of edema: severe pulmonary hypertension can exist in the absence of clinical HAPE in subjects at high altitude.
Alveolar disease is visible on chest radiography as small, ill-defined nodules of homogeneous density centered on the acini or bronchioles. The nodules coalesce early in the course of disease, such that the nodules may only be seen as soft fluffy edges in the periphery.
When the nodules are centered on the hilar regions, the chest x-ray may develop what is called the "butterfly," or "batwing" appearance. The nodules may also have a segmental or lobar distribution. Air alveolograms and air bronchograms can also be seen.
These findings appear soon after the onset of symptoms and change rapidly thereafter.
A segmental or lobar pattern may be apparent after aspiration pneumonia, atelectasis, lung contusion, localized pulmonary edema, obstructive pneumonia, pneumonia, pulmonary embolism with infarction, or tuberculosis.
The signs and symptoms of ARDS often begin within two hours of an inciting event, but can occur after 1–3 days. Signs and symptoms may include shortness of breath, fast breathing, and a low oxygen level in the blood due to abnormal ventilation.
Alveolar lung diseases, are a group of diseases that mainly affect the alveoli of the lungs.
Acute respiratory distress syndrome (ARDS) is a medical condition occurring in critically ill patients characterized by widespread inflammation in the lungs. ARDS is not a particular disease; rather, it is a clinical phenotype which may be triggered by various pathologies such as trauma, pneumonia and sepsis.
The hallmark of ARDS is diffuse injury to cells which form the barrier of the microscopic air sacs of the lungs, surfactant dysfunction, activation of the innate immune system response, and dysfunction of the body's regulation of clotting and bleeding. In effect, ARDS impairs the lungs' ability to exchange oxygen and carbon dioxide with the blood across a thin layer of the lungs' microscopic air sacs known as alveoli.
The syndrome is associated with a death rate between 20 and 50%. The risk of death varies based on severity, the person's age, and the presence of other underlying medical conditions.
Although the terminology of "adult respiratory distress syndrome" has at times been used to differentiate ARDS from "infant respiratory distress syndrome" in newborns, the international consensus is that "acute respiratory distress syndrome" is the best term because ARDS can affect people of all ages.