Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
More specifically, glomerulosclerosis can refer to:
- Focal segmental glomerulosclerosis
- Nodular glomerulosclerosis (diabetic)
Minimal change disease is characterised as a cause of nephrotic syndrome without visible changes in the glomerulus on microscopy. Minimal change disease typically presents with edema, an increase in proteins passed from urine and decrease in blood protein levels, and an increase in circulating lipids (i.e., nephrotic syndrome) and is the most common cause of the nephrotic syndrome in children. Although no changes may be visible by light microscopy, changes on electron microscopy within the glomerules may show a fusion of the foot processes of the podocytes (cells lining the basement membrane of the capillaries of glomerulus). It is typically managed with corticosteroids and does not progress to chronic kidney disease.
Some people may present as nephrotic syndrome with proteinuria, edema with or without renal failure. Others may be asymptomatic and may be picked up on screening or urinalysis as having proteinuria. A definitive diagnosis of membranous nephropathy requires a kidney biopsy.
This is characterised by forms of glomerulonephritis in which the number of cells is not changed. These forms usually result in the nephrotic syndrome. Causes include:
Primary causes of nephrotic syndrome are usually described by their histology:
- Minimal change disease (MCD): is the most common cause of nephrotic syndrome in children. It owes its name to the fact that the nephrons appear normal when viewed with an optical microscope as the lesions are only visible using an electron microscope. Another symptom is a pronounced proteinuria.
- Focal segmental glomerulosclerosis (FSGS): is the most common cause of nephrotic syndrome in adults. It is characterized by the appearance of tissue scarring in the glomeruli. The term "focal" is used as some of the glomeruli have scars, while others appear intact; the term "segmental" refers to the fact that only part of the glomerulus suffers the damage.
- Membranous glomerulonephritis (MGN): The inflammation of the glomerular membrane causes increased leaking in the kidney. It is not clear why this condition develops in most people, although an auto-immune mechanism is suspected.
- Membranoproliferative glomerulonephritis (MPGN): is the inflammation of the glomeruli along with the deposit of antibodies in their membranes, which makes filtration difficult.
- Rapidly progressive glomerulonephritis (RPGN): (Usually presents as a nephritic syndrome) A patient’s glomeruli are present in a "crescent moon" shape. It is characterized clinically by a rapid decrease in the glomerular filtration rate (GFR) by at least 50% over a short period, usually from a few days to 3 months.
They are considered to be "diagnoses of exclusion", i.e. they are diagnosed only after secondary causes have been excluded.
Most types of RPGN are characterized by severe and rapid loss of kidney function featuring severe hematuria (blood in the urine), red blood cell casts in the urine, and proteinuria (protein in the urine), sometimes exceeding 3 g protein/24 h, a range associated with nephrotic syndrome. Some patients also experience hypertension (high blood pressure) and edema. Severe disease is characterized by pronounced oliguria or anuria, which portends a poor prognosis.
Some general secondary causes are listed below:
- Glomerular hypertrophy/hyperfiltration
- Unilateral renal agenesis
- Morbid obesity
- Scarring due to previous injury
- Focal proliferative glomerulonephritis
- Vasculitis
- Lupus
- Toxins (pamidronate)
- Human immunodeficiency virus-associated nephropathy
- Heroin nephropathy
Focal segmental glomerulosclerosis may develop following acquired loss of nephrons from reflux nephropathy. Proteinuria is nonselective in most cases and may be in subnephrotic range (nephritic range <3.0gm/24hr) or nephritic range.
The prognosis for nephrotic syndrome under treatment is generally good although this depends on the underlying cause, the age of the patient and their response to treatment. It is usually good in children, because minimal change disease responds very well to steroids and does not cause chronic renal failure. Any relapses that occur become less frequent over time; the opposite occurs with mesangiocapillary glomerulonephritis, in which the kidney fails within three years of the disease developing, making dialysis necessary and subsequent kidney transplant. In addition children under the age of 5 generally have a poorer prognosis than prepubescents, as do adults older than 30 years of age as they have a greater risk of kidney failure.
Other causes such as focal segmental glomerulosclerosis frequently lead to end stage renal disease. Factors associated with a poorer prognosis in these cases include level of proteinuria, blood pressure control and kidney function (GFR).
Without treatment nephrotic syndrome has a very bad prognosis especially "rapidly progressing glomerulonephritis", which leads to acute kidney failure after a few months.
Glomerulosclerosis, also known as glomerular sclerosis, refers to a hardening of the glomerulus in the kidney. It is a general term to describe scarring of the kidneys' tiny blood vessels, the glomeruli, the functional units in the kidney that filter urine from the blood.
Proteinuria (large amounts of protein in urine) is one of the signs of glomerulosclerosis. Scarring disturbs the filtering process of the kidneys and allows protein to leak from the blood into urine. However, glomerulosclerosis is one of many causes of proteinuria. A kidney biopsy (removal of tiny part of kidney with a needle) may be necessary to determine whether a patient has glomerulosclerosis or another kidney problem. About 15 percent of people with proteinuria turn out to have glomerulosclerosis.
Both children and adults can develop glomerulosclerosis and it can result from different types of kidney conditions. One frequently encountered type of glomerulosclerosis is caused by diabetes. Drug use or infections may cause focal segmental glomerulosclerosis (FSGS), a very chronic kidney condition. FSGS may also occur in patients with AIDS but most are of unknown cause.
Early stages of glomerulosclerosis may not produce any symptoms but the most important warning sign is proteinuria, usually discovered in routine medical exams. Losing large amounts of protein may cause swelling in the ankles and accumulation of fluid in the abdomen.
Scarred glomeruli cannot be repaired and many patients with glomerulosclerosis get worse over time until their kidneys fail. This condition is called end-stage renal disease (ESRD) and the patients must begin dialysis treatment or receive a kidney transplant. ESRD may be reached within a year or up to ten or more of diagnosis of glomerulosclerosis but time will vary.
Treatments for glomerulosclerosis depend on what caused the scarring of the glomeruli. This is determined by renal biopsy. Immunosuppressive drugs stop proteinuria in some patients, but once the treatments have ended proteinuria will continue. The drugs may sometimes damage the patient's kidneys even more.
Controlling the patient's blood pressure may control the progression of kidney failure. ACE inhibitors, a type of blood pressure medicine, preserve kidney function in patients with diabetes. ACE inhibitors may also slow down kidney failure for patients without diabetes. Low protein diets may also lighten the work done by kidneys to process waste. Some patients will need to control their cholesterol through diet or both diet and medicine.
The classic presentation (in 40–50% of the cases) is episodic hematuria, which usually starts within a day or two of a non-specific upper respiratory tract infection (hence "synpharyngitic"), as opposed to post-streptococcal glomerulonephritis, which occurs some time (weeks) after initial infection. Less commonly gastrointestinal or urinary infection can be the inciting agent. All of these infections have in common the activation of mucosal defenses and hence IgA antibody production. Groin pain can also occur. The gross hematuria resolves after a few days, though microscopic hematuria may persist. These episodes occur on an irregular basis every few months and in most patients eventually subsides, although it can take many years. Renal function usually remains normal, though rarely, acute kidney failure may occur (see below). This presentation is more common in younger adults.
A smaller proportion (20-30%), usually the older population, have microscopic hematuria and proteinuria (less than 2 gram/day). These patients may not have any symptoms and are only clinically found if a physician decides to take a urine sample. Hence, the disease is more commonly diagnosed in situations where screening of urine is compulsory (e.g., schoolchildren in Japan).
Very rarely (5% each), the presenting history is:
- Nephrotic syndrome (3-3.5 grams of protein loss in the urine, associated with a poorer prognosis)
- Acute kidney failure (either as a complication of the frank hematuria, when it usually recovers, or due to rapidly progressive glomerulonephritis which often leads to chronic kidney failure)
- Chronic kidney failure (no previous symptoms, presents with anemia, hypertension and other symptoms of kidney failure, in people who probably had longstanding undetected microscopic hematuria and/or proteinuria)
A variety of systemic diseases are associated with IgA nephropathy such as liver failure, celiac disease, rheumatoid arthritis, reactive arthritis, ankylosing spondylitis and HIV. Diagnosis of IgA nephropathy and a search for any associated disease occasionally reveals such an underlying serious systemic disease. Occasionally, there are simultaneous symptoms of Henoch–Schönlein purpura; see below for more details on the association. Some HLA alleles have been suspected along with complement phenotypes as being genetic factors.
The closely related terms membranous nephropathy and membranous glomerulopathy both refer to a similar constellation but without the assumption of inflammation.
Membranous nephritis (in which inflammation is implied, but the glomerulus not explicitly mentioned) is less common, but the phrase is occasionally encountered. These conditions are usually considered together.
By contrast, membranoproliferative glomerulonephritis has a similar name, but is considered a separate condition with a distinctly different causality. Membranoproliferative glomerulonephritis involves the basement membrane and mesangium, while membranous glomerulonephritis involves the basement membrane but not the mesangium. (Membranoproliferative glomerulonephritis has the alternate name "mesangiocapillary hohki", to emphasize its mesangial character.)
In children and some adults, FSGS presents as a nephrotic syndrome, which is characterized by edema (associated with weight gain), hypoalbuminemia (low serum albumin, a protein in the blood), hyperlipidemia and hypertension (high blood pressure). In adults, it may also present as kidney failure and proteinuria, without a full-blown nephrotic syndrome.
Proteinuria is the presence of excess proteins in the urine. In healthy persons, urine contains very little protein; an excess is suggestive of illness. Excess protein in the urine often causes the urine to become foamy, although foamy urine may also be caused by bilirubin in the urine (bilirubinuria), retrograde ejaculation, pneumaturia (air bubbles in the urine) due to a fistula, or drugs such as pyridium.
It is characterized by glomerular basement membrane thickening (referred to as "tram-tracking of the basement membrane"), increased mesangial matrix and segmental and global glomerulosclerosis.
The differential diagnosis of tram-tracking includes membranoproliferative glomerulonephritis (especially hepatitis C), and thrombotic microangiopathies.
Histologically, IgA nephropathy may show mesangial widening and focal and segmental inflammation. Diffuse mesangial proliferation or crescentic glomerulonephritis may also be present. Immunoflourescence shows mesangial deposition of IgA often with C3 and properdin and smaller amounts of other immunoglobulins (IgG or IgM). Early components of the classical complement pathway (C1q or C4) are usually not seen. Electron microscopy confirms electron-dense deposits in the mesangium that may extend to the subendothelial area of adjacent capillary walls in a small subset of cases, usually those with focal proliferation.
Signs and symptoms of chronic kidney disease, including loss of appetite, nausea, vomiting, itching, sleepiness or confusion, weight loss, and an unpleasant taste in the mouth, may develop.
Acute kidney injuries can be present on top of chronic kidney disease, a condition called acute-on-chronic kidney failure (AoCRF). The acute part of AoCRF may be reversible, and the goal of treatment, as with AKI, is to return the patient to baseline kidney function, typically measured by serum creatinine. Like AKI, AoCRF can be difficult to distinguish from chronic kidney disease if the patient has not been monitored by a physician and no baseline (i.e., past) blood work is available for comparison.
Also known as pauci-immune RPGN, type III RPGN accounts for 55% of RPGN and features neither immune complex deposition nor anti-GBM antibodies. Instead, the glomeruli are damaged in an undefined manner, perhaps through the activation of neutrophils in response to ANCA. Type III RPGN may be isolated to the glomerulus (primary, or idiopathic) or associated with a systemic disease (secondary). In most cases of the latter, the systemic disease is an ANCA-associated vasculitis such as granulomatosis with polyangiitis, microscopic polyangiitis or eosinophilic granulomatosis with polyangiitis.
Chronic kidney disease (CKD) can also develop slowly and, initially, show few symptoms. CKD can be the long term consequence of irreversible acute disease or part of a disease progression.
Most patients with thin basement membrane disease are incidentally discovered to have microscopic hematuria on urinalysis. The blood pressure, kidney function, and the urinary protein excretion are usually normal. Mild proteinuria (less than 1.5 g/day) and hypertension are seen in a small minority of patients. Frank hematuria and loin pain should prompt a search for another cause, such as kidney stones or loin pain-hematuria syndrome. Also, there are no systemic manifestations, so presence of hearing impairment or visual impairment should prompt a search for hereditary nephritis such as Alport syndrome.
Hypertensive kidney disease is a medical condition referring to damage to the kidney due to chronic high blood pressure. HN can be divided into two types: benign and malignant. Benign nephrosclerosis is common in individuals over the age of 60 where malignant nephrosclerosis is uncommon and affects 1-5% of individuals with high blood pressure, that have diastolic blood pressure passing 130 mm Hg. It should be distinguished from renovascular hypertension, which is a form of secondary hypertension. In addition, HN can be referred to as hypertensive nephrosclerosis, benign nephrosclerosis, and nephroangiosclerosis.
The clinical picture is often dominated by the underlying cause.The symptoms of acute kidney injury result from the various disturbances of kidney function that are associated with the disease. Accumulation of urea and other nitrogen-containing substances in the bloodstream lead to a number of symptoms, such as fatigue, loss of appetite, headache, nausea and vomiting. Marked increases in the potassium level can lead to abnormal heart rhythms, which can be severe and life-threatening. Fluid balance is frequently affected, though blood pressure can be high, low or normal.
Pain in the flanks may be encountered in some conditions (such as clotting of the kidneys' blood vessels or inflammation of the kidney); this is the result of stretching of the fibrous tissue capsule surrounding the kidney. If the kidney injury is the result of dehydration, there may be thirst as well as evidence of fluid depletion on physical examination. Physical examination may also provide other clues as to the underlying cause of the kidney problem, such as a rash in interstitial nephritis (or vasculitis) and a palpable bladder in obstructive nephropathy.
There are three main mechanisms to cause proteinuria:
- Due to disease in the glomerulus
- Because of increased quantity of proteins in serum (overflow proteinuria)
- Due to low reabsorption at proximal tubule (Fanconi syndrome)
Proteinuria can also be caused by certain biological agents, such as bevacizumab (Avastin) used in cancer treatment. Excessive fluid intake (drinking in excess of 4 litres of water per day) is another cause.
Also leptin administration to normotensive Sprague Dawley rats during pregnancy significantly increases urinary protein excretion.
Proteinuria may be a sign of renal (kidney) damage. Since serum proteins are readily reabsorbed from urine, the presence of excess protein indicates either an insufficiency of absorption or impaired filtration. People with diabetes may have damaged nephrons and develop proteinuria. The most common cause of proteinuria is diabetes, and in any person with proteinuria and diabetes, the cause of the underlying proteinuria should be separated into two categories: diabetic proteinuria versus the field.
With severe proteinuria, general hypoproteinemia can develop which results in
diminished oncotic pressure. Symptoms of diminished oncotic pressure may include ascites, edema and hydrothorax.
Thin basement membrane disease must be differentiated from the other two common causes of glomerular hematuria, IgA nephropathy and Alport syndrome. The history and presentation are helpful in this regard:
- In Alport syndrome, there is often a family history of kidney failure, which may be associated with hearing impairment. Also, males tend to be more affected as Alport syndrome is X-linked in most cases.
- In IgA nephropathy, episodes of frank hematuria are more common, and a family history is less common.
A kidney biopsy is the only way to diagnose thin basement membrane disease. It reveals thinning of the glomerular basement membrane from the normal 300 to 400 nanometers (nm) to 150 to 250 nm. However, a biopsy is rarely done in cases where the patient has isolated microscopic hematuria, normal kidney function, and no proteinuria. The prognosis is excellent in this setting unless the clinical manifestations progress, as occurs in most males and some females with Alport syndrome and many patients with IgA nephropathy.
The onset of symptoms is 5 to 10 years after the disease begins. A usual first symptom is frequent urination at night: nocturia. Other symptoms include tiredness, headaches, a general feeling of illness, nausea, vomiting, frequent daytime urination, lack of appetite, itchy skin, and leg swelling.