Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by antiphospholipid antibodies. APS provokes blood clots (thrombosis) in both arteries and veins as well as pregnancy-related complications such as miscarriage, stillbirth, preterm delivery, and severe preeclampsia.
The diagnostic criteria require one clinical event (i.e. thrombosis or pregnancy complication) and two antibody blood tests spaced at least three months apart that confirm the presence of either lupus anticoagulant or anti-β-glycoprotein-I (since β-glycoprotein-I antibodies are a subset of anti-cardiolipin antibodies, an anti-cardiolipin assay can be performed as a less specific proxy).
Antiphospholipid syndrome can be primary or secondary. Primary antiphospholipid syndrome occurs in the absence of any other related disease. Secondary antiphospholipid syndrome occurs with other autoimmune diseases, such as systemic lupus erythematosus (SLE). In rare cases, APS leads to rapid organ failure due to generalised thrombosis; this is termed "catastrophic antiphospholipid syndrome" (CAPS or Asherson syndrome) and is associated with a high risk of death.
Antiphospholipid syndrome often requires treatment with anticoagulant medication such as heparin to reduce the risk of further episodes of thrombosis and improve the prognosis of pregnancy. Warfarin/Coumadin is not used during pregnancy because it can cross the placenta, unlike heparin, and is teratogenic.
The presence of antiphospholipid antibodies (aPL) in the absence of blood clots or pregnancy-related complications does not indicate APS (see below for the diagnosis of APS).
Antiphospholipid syndrome can cause arterial or venous blood clots, in any organ system, or pregnancy-related complications. In APS patients, the most common venous event is deep vein thrombosis of the lower extremities, and the most common arterial event is stroke. In pregnant women affected by APS, there is an increased risk of recurrent miscarriage, intrauterine growth restriction, and preterm birth. A frequent cause of such complications is placental infarctions.
In some cases, APS seems to be the leading cause of mental and/or development retardation in the newborn, due to an aPL-induced inhibition of trophoblast differentiation. The antiphospholipid syndrome responsible for most of the miscarriages in later trimesters seen in concomitant systemic lupus erythematosus and pregnancy.
Other common findings, although not part of the APS classification criteria, are low platelet count, heart valve disease, and livedo reticularis. There are also associations between antiphospholipid antibodies and headaches, migraines, and oscillopsia. Some studies have shown the presence of antiphospholipid antibodies in the blood and spinal fluid of patients with psychological symptoms.
Very few patients with primary APS go on to develop SLE.
Sneddon's syndrome generally manifests with stroke or severe, transient neurological symptoms, and a skin rash (livedo reticularis). Livedo reticularis appears as a bluish-purple, netlike mottling of the skin. Sneddon's syndrome may instead present with livedo racemosa, which involves larger, less organized patches of bluish-purple mottling of the skin. Both are generally found first in the extremities, both worsen in cold and either may occur without Sneddon's Syndrome or any other systemic disease.
Sneddon's Syndrome can be characterized by: transient amnesia, transient aphasia, palsy, headaches, hypertension, transient ischemic attacks (TIA), stroke, coronary disease and dementia. The skin manifestations may precede the neurologic symptoms by years.
Neuropsychiatric syndromes can result when SLE affects the central or peripheral nervous system. The American College of Rheumatology defines 19 neuropsychiatric syndromes in systemic lupus erythematosus. The diagnosis of neuropsychiatric syndromes concurrent with SLE (now termed as NPSLE), is one of the most difficult challenges in medicine, because it can involve so many different patterns of symptoms, some of which may be mistaken for signs of infectious disease or stroke.
A common neurological disorder people with SLE have is headache, although the existence of a specific lupus headache and the optimal approach to headache in SLE cases remains controversial.
Other common neuropsychiatric manifestations of SLE include cognitive dysfunction, mood disorder, cerebrovascular disease, seizures, polyneuropathy, anxiety disorder, psychosis, depression, and in some extreme cases, personality disorders. Steroid psychosis can also occur as a result of treating the disease. It can rarely present with intracranial hypertension syndrome, characterized by an elevated intracranial pressure, papilledema, and headache with occasional abducens nerve paresis, absence of a space-occupying lesion or ventricular enlargement, and normal cerebrospinal fluid chemical and hematological constituents.
More rare manifestations are acute confusional state, Guillain–Barré syndrome, aseptic meningitis, autonomic disorder, demyelinating syndrome, mononeuropathy (which might manifest as mononeuritis multiplex), movement disorder (more specifically, chorea), myasthenia gravis, myelopathy, cranial neuropathy and plexopathy.
Neurological disorders contribute to a significant percentage of morbidity and mortality in people with lupus. As a result, the neural side of lupus is being studied in hopes of reducing morbidity and mortality rates. One aspect of this disease is severe damage to the epithelial cells of the blood–brain barrier. In certain regions, depression affects up to 60% of women with SLE.
Painless passage of blood or protein in the urine may often be the only presenting sign of kidney involvement. Acute or chronic renal impairment may develop with lupus nephritis, leading to acute or end-stage kidney failure. Because of early recognition and management of SLE, end-stage renal failure occurs in less than 5% of cases; except in the black population, where the risk is many times higher.
The histological hallmark of SLE is membranous glomerulonephritis with "wire loop" abnormalities. This finding is due to immune complex deposition along the glomerular basement membrane, leading to a typical granular appearance in immunofluorescence testing.
Lupus anticoagulant (also known as lupus antibody, LA, LAC, or lupus inhibitors) is an immunoglobulin that binds to phospholipids and proteins associated with the cell membrane. Lupus anticoagulant is a misnomer, as it is actually a prothrombotic agent. Lupus anticoagulant antibodies in living systems cause an increase in inappropriate blood clotting. The name derives from their properties in vitro, since in laboratory tests, these antibodies increase aPTT. Investigators speculate that the antibodies interfere with phospholipids used to induce in vitro coagulation. In vivo, the antibodies are thought to interact with platelet membrane phospholipids, increasing adhesion and aggregation of platelets, which accounts for the in vivo prothrombotic characteristics.
The condition was first described by hematologist C. Lockard Conley.
An overlap syndrome is an autoimmune disease of connective tissue in which a person presents with symptoms of two or more diseases.
Examples of overlap syndromes include mixed connective tissue disease and scleromyositis. Diagnosis depends on which diseases the patient shows symptoms and has positive antibodies for in their lab serology.
In overlap syndrome, features of the following diseases are found (most common listed):
- Systemic lupus erythematosus (SLE),
- Systemic sclerosis,
- Polymyositis,
- Dermatomyositis,
- Rheumatoid arthritis (RA)
- Sjögren's syndrome
- Eosinophilic granulomatosis with polyangiitis (EGPA)
- Autoimmune thyroiditis
- Antiphospholipid antibody syndrome
The treatment of overlap syndrome is mainly based on the use of corticosteroids and immunosuppressants. Biologic drugs, i.e. anti-TNFα or anti-CD20 monoclonal antibodies, have been recently introduced as alternative treatments in refractory cases. There are some concerns with the use of anti-TNF agents in patients with systemic autoimmune diseases due to the risk of triggering disease exacerbations.
Both words in the term "lupus anticoagulant" can be misleading:
- Most patients with a lupus anticoagulant do not actually have lupus erythematosus, and only a small proportion will proceed to develop this disease (which causes joint pains, skin problems and renal failure, amongst other complications). Patients with lupus erythematosus are more likely to develop a lupus anticoagulant than the general population.
- The term "anticoagulant" accurately describes its function in vitro. However in vivo, it functions as a "procoagulant".
Catastrophic antiphospholipid syndrome (CAPS), also known as Asherson's syndrome, is an acute and complex biological process that leads to occlusion of small vessels of various organs. It was first described by Ronald Asherson in 1992. The syndrome exhibits thrombotic microangiopathy, multiple organ thrombosis, and in some cases tissue necrosis and is considered an extreme or catastrophic variant of the antiphospholipid syndrome.
CAPS has a mortality rate of about 50%. With the establishment of a CAPS-Registry more has been learned about this syndrome, but its cause remains unknown. Infection, trauma, medication, and/or surgery can be identified in about half the cases as a "trigger". It is thought that cytokines are activated leading to a cytokine storm with the potentially fatal consequences of organ failure. A low platelet count is a common finding. Individuals with CAPS often exhibit a positive test to antilipid antibodies, typically IgG, and may or may not have a history of lupus or another connective tissue disease. Association with another disease such as lupus is called a secondary APS unless it includes the defining criteria for CAPS.
Clinically, the syndrome affects at least three organs and may affect many organs systems. Peripheral thrombosis may be encountered affecting veins and arteries. Intraabdominal thrombosis may lead to pain. Cardiovascular, nervous, kidney, and lung system complications are common. The affected individual may exhibit skin purpura and necrosis. Cerebral manifestations may lead to encephalopathy and seizures. Myocardial infarctions may occur. Strokes may occur due to the arterial clotting involvement. Death may result from multiple organ failure.
Treatments may involve the following steps:
- Prevention includes the use of antibiotics for infection and parenteral anticoagulation for susceptible patients.
- Specific therapy includes the use of intravenous heparin and corticosteroids, and possibly plasma exchanges, intravenous immunoglobulin.
- Additional steps may have to be taken to manage circulatory problems, kidney failure, and respiratory distress.
- When maintaining survival of the disease treatments also include high doses of Rituxan (Rituximab) to maintain stability.
Sneddon's syndrome is a progressive, noninflammatory arteriopathy leading to the characteristic skin condition and to cerebrovascular problems, including stroke, transient ischemic attack (TIA), severe but transient neurological symptoms thought to be caused by cerebral vasospasm, coronary disease and early-onset dementia. Progressive compromise of arterial linings in Sneddon's produces clotting, for which high-dose warfarin is most commonly prescribed, and can also cause the development of systemic arterial plaque when cholesterol levels are normal.
The most common conditions associated with thrombophilia are deep vein thrombosis (DVT) and pulmonary embolism (PE), which are referred to collectively as venous thromboembolism (VTE). DVT usually occurs in the legs, and is characterized by pain, swelling and redness of the limb. It may lead to long-term swelling and heaviness due to damage to valves in the veins. The clot may also break off and migrate (embolize) to arteries in the lungs. Depending on the size and the location of the clot, this may lead to sudden-onset shortness of breath, chest pain, palpitations and may be complicated by collapse, shock and cardiac arrest.
Venous thrombosis may also occur in more unusual places: in the veins of the brain, liver (portal vein thrombosis and hepatic vein thrombosis), mesenteric vein, kidney (renal vein thrombosis) and the veins of the arms. Whether thrombophilia also increases the risk of arterial thrombosis (which is the underlying cause of heart attacks and strokes) is less well established.
Thrombophilia has been linked to recurrent miscarriage, and possibly various complications of pregnancy such as intrauterine growth restriction, stillbirth, severe pre-eclampsia and abruptio placentae.
Protein C deficiency may cause purpura fulminans, a severe clotting disorder in the newborn that leads to both tissue death and bleeding into the skin and other organs. The condition has also been described in adults. Protein C and protein S deficiency have also been associated with an increased risk of skin necrosis on commencing anticoagulant treatment with warfarin or related drugs.
Thrombophilia can be congenital or acquired. "Congenital thrombophilia" refers to inborn conditions (and usually hereditary, in which case ""hereditary thrombophilia"" may be used) that increase the tendency to develop thrombosis, while, on the other hand, "acquired thrombophilia" refers to conditions that arise later in life.
Aggravation (or exacerbation) of SLE has been estimated to occur in about 20-30% pregnancies where the mother has SLE. Increased disease activity of SLE is expected during pregnancy because of increased levels of estrogen, prolactin, and certain cytokines. However, a long time of remission before pregnancy decreases the risk of aggravation, with an incidence of 7-33% in women who have been in remission for at least 6 months, and an incidence of 61-67% in women who have active SLE at the time of conception.
Renal disease flare-up is the most common presentation of SLE aggravation in pregnancy, and is seen equally in United States and European populations. Serositis with pleural and pericardial effusions are seen in up to 10% of these patients.
On the other hand, flares of SLE are uncommon during pregnancy and are often easily treated. The most common symptoms of these flares include arthritis, rashes, and fatigue.
Also, in the postpartum period, there may be exacerbations of SLE due to decreased levels of anti-inflammatory steroids, elevated levels of prolactin and estrogen and progesterone changes.
In diagnosing an aggravation of SLE in pregnancy, there need to be a differential diagnosis from SLE-unrelated complications of pregnancy that may appear in a similar fashion. For example, chloasma may appear like the malar rash of SLE, proteinuria from preeclampsia may appear like that of lupus nephritis, thrombocytopenia of the HELLP syndrome may appear like that of SLE, and pregnancy-related edema of joints can appear like arthritis of SLE.
The acute syndrome presents with rapidly progressive severe upper abdominal pain, yellow discoloration of the skin and whites of the eyes, liver enlargement, enlargement of the spleen, fluid accumulation within the peritoneal cavity, elevated liver enzymes, and eventually encephalopathy. The fulminant syndrome presents early with encephalopathy and ascites. Liver cell death and severe lactic acidosis may be present as well. Caudate lobe enlargement is often present. The majority of patients have a slower-onset form of Budd–Chiari syndrome. This can be painless. A system of venous collaterals may form around the occlusion which may be seen on imaging as a "spider's web". Patients may progress to cirrhosis and show the signs of liver failure.
On the other hand, incidental finding of a silent, asymptomatic form may not be a cause for concern.
The condition can cause pain within the affected extremities, discoloration (paleness), and sensations of cold and/or numbness. This can often be distressing to those who are undiagnosed, and sometimes it can be obstructive. If someone with Raynaud's is placed into a cold climate, it could potentially become dangerous.
1. When exposed to cold temperatures, the blood supply to the fingers or toes, and in some cases the nose or earlobes, is markedly reduced; the skin turns pale or white (called pallor) and becomes cold and numb.
2. When the oxygen supply is depleted, the skin color turns blue (called cyanosis).
3. These events are episodic, and when the episode subsides or the area is warmed, the blood flow returns, and the skin color first turns red (rubor), and then back to normal, often accompanied by swelling, tingling, and a painful "pins and needles" sensation.
All three color changes are observed in classic Raynaud's. However, not all patients see all of the aforementioned color changes in all episodes, especially in milder cases of the condition. Symptoms are thought to be due to reactive hyperemias of the areas deprived of blood flow.
In pregnancy, this sign normally disappears owing to increased surface blood flow. Raynaud's has also occurred in breastfeeding mothers, causing nipples to turn white and become extremely painful. Nifedipine, a calcium channel blocker and vasodilator, was recommended to increase blood flow to the extremities and noticeably relieved pain in the breast in an extremely small study group.
Budd–Chiari syndrome is a very rare condition, affecting 1 in a million adults. The condition is caused by occlusion of the hepatic veins that drain the liver. It presents with the classical triad of abdominal pain, ascites, and liver enlargement. The formation of a blood clot within the hepatic veins can lead to Budd–Chiari syndrome. The syndrome can be fulminant, acute, chronic, or asymptomatic.
The clinical presentation of TMA, although dependent on the type, typically includes: fever, microangiopathic hemolytic anemia (see schistocytes in a blood smear), renal failure, thrombocytopenia and neurological manifestations. Generally, renal complications are particularly predominant with Shiga-toxin-associated hemolytic uremic syndrome (STx-HUS) and atypical HUS, whereas neurologic complications are more likely with TTP. Individuals with milder forms of TTP may have recurrent symptomatic episodes, including seizures and vision loss. With more threatening cases of TMA, and also as the condition progresses without treatment, multi-organ failure or injury is also possible, as the hyaline thrombi can spread to and affect the brain, kidneys, heart, liver, and other major organs.
The presentation of TTP is variable. The initial symptoms, which force the patient to medical care, are often the consequence of lower platelet counts like purpura (present in 90% of patients), ecchymosis and hematoma. Patients may also report signs and symptoms as a result of (microangiopathic) hemolytic anemia, such as (dark) beer-brown urine, (mild) jaundice, fatigue and pallor. Cerebral symptoms of various degree are present in many patients, including headache, paresis, speech disorder, visual problems, seizures and disturbance of consciousness up to coma. The symptoms can fluctuate so that they may only be temporarily present but may reappear again later in the TTP episode. Other unspecific symptoms are general malaise, abdominal, joint and muscle pain. Severe manifestations of heart or lung involvements are rare, although affections are not seldom measurable (such as ECG-changes).
Currently laboratory testing is not as reliable as observation when it comes to defining the parameters of Thrombotic Storm. Careful evaluation of possible thrombosis in other organ systems is pertinent in expediting treatment to prevent fatality.Preliminary diagnosis consists of evidence documented with proper imaging studies such as CT scan, MRI, or echocardiography, which demonstrate a thromboembolic occlusion in the veins and/or arteries. Vascular occlusions mentioned must include at least two of the clinic events:
- Deep venous thrombosis affecting one (or more) limbs and/or pulmonary embolism.
- Cerebral vein thrombosis.
- Portal vein thrombosis, hepatic vein, or other intra-abdominal thrombotic events.
- Jugular vein thrombosis in the absence of ipsilateral arm vein thrombosis and in the absence of ipsilateral central venous access.
- Peripheral arterial occlusions, in the absence of underlying atherosclerotic vascular disease,
- resulting in extremity ischemia and/or infarction.
- Myocardial infarction, in the absence of severe coronary artery disease
- Stroke and/or transient ischemic attack, in the absence of severe atherosclerotic disease and at an age less than 60 years.
- Central retinal vein and/or central retinal arterial thrombosis.
- Small vessel thrombosis affecting one or more organs, systems, or tissue; must be documented by histopathology.
In addition to the previously noted vascular occlusions, development of different thromboembolic manifestations simultaneously or within one or two weeks must occur and the patient must have an underlying inherited or acquired hypercoagulable state (other than Antiphospholipid syndrome)
Thrombotic Storm has been seen in individuals of all ages and races. The initial symptoms of TS present in a similar fashion to the symptoms experienced in deep vein thrombosis. Symptoms of a DVT may include pain, swelling and discoloration of the skin in the affected area. As with DVTs patients with TS may subsequently develop pulmonary emboli. Although the presentation of TS and DVTs are similar, TS typically progresses rapidly, with numerous clots occurring within a short period of time. After the formation of the initial clot a patient with TS typically begins a “clotting storm” with the development of multiple clots throughout the body. Rapid progression within a short period of time is often seen, affecting multiple organs systems. The location of the clot is often unusual or found in a spot in the body that is uncommon such as the dural sinus. Patients tend to respond very well to anticoagulation such as coumadin or low molecular weight heparin but may become symptomatic when treatment is withheld.
While the key clinical characteristics of thrombotic storm are still being investigated, it is believed that the clinical course is triggered by a preexisting condition, known as a hypercoagulable state. These can include such things as pregnancy, trauma or surgery. Hypercoagulable states can be an inherited or acquired risk factor that then serves as a trigger to initiate clot formation. However, in a subset of patient with TS a trigger cannot be identified. Typically people with TS will have no personal or family history of coagulations disorders.
Cryofibrinogenmic disease commonly begins in adults aged 40–50 years old with symptoms of the diseases occurring in the almost always affected organ, skin. Cutaneous symptoms include on or more of the following: cold contact-induced urticarial (which may be the first sign of the disease); painful episodes of finger and/or toe arterial spasms termed Ranaud phenomena; cyanosis, s palpable purpura termed Cryofibrinogenemic purpura), and a lace-like purplish discoloration termed livedo reticularis all of which occur primarily in the lower extremities but some of which may occur in the nose, ears, and buttocks; non-healing painful ulcerations and gangrene of the areas impacted by the cited symptoms. Patients also have a history of cold sensitivity (~25% of cases), arthralgia (14-58%), neuritis (7-19%), myalgia (0-14%); and overt thrombosis of arteries and veins (25-40%) which may on rare occasions involve major arteries such of those of the brain and kidney. Signs of renal involvement (proteinuria, hematuria, decreased glomerular filtration rate, and/or, rarely, renal failure) occur in 4-25% of cases. Compared to secondary cryofibrinogemia, primary crygofibrinogenemia has a higher incidence of cutaneous lesions, arthralgia, and cold sensitivity while having a far lower incidence of renal involvement. Patients with secondary cryofibrinogenemia also exhibit signs and symptoms specific to the infectious, malignant, premalignant vasculitis, and autoimmune disorders associated with their disease. While rare, individuals with cryofibrinogemic disease may experience pathological bleeding due to the consumption of blood clotting factors consequential to the formation of cryofibrinogen precipitates.
Thrombotic microangiopathy (TMA) is a pathology that results in thrombosis in capillaries and arterioles, due to an endothelial injury. It may be seen in association with thrombocytopenia, anemia, purpura and renal failure.
The classic TMAs are hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Other conditions with TMA include atypical hemolytic uremic syndrome, disseminated intravascular coagulation, scleroderma renal crisis, malignant hypertension,
antiphospholipid antibody syndrome, and drug toxicities, e.g. calcineurin inhibitor toxicity.
Neonatal lupus is the occurrence of SLE symptoms in an infant born from a mother with SLE, most commonly presenting with a rash resembling discoid lupus erythematosus, and sometimes with systemic abnormalities such as heart block or hepatosplenomegaly. Neonatal lupus is usually benign and self-limited. Still, identification of mothers at highest risk for complications allows for prompt treatment before or after birth. In addition, SLE can flare up during pregnancy, and proper treatment can maintain the health of the mother for longer.
A broad range of autoimmune diseases have been reported to be associated with cryofibrinogenemia. These diseases include systemic lupus erythematosis, Sjorgren's syndrome, rheumatoid arthritis, mixed connective tissue disease, polymyositis, dermatomyositis, systemic sclerosis, antiphospholipid antibody syndrome, Hashimoto disease, Graves disease, sarcoidosis, pyoderma gangrenosum, spondyloarthropathy, Crohn disease, and ulcerative colitis.
Raynaud's phenomenon, or "Secondary Raynaud's", occurs "secondary to" a wide variety of other conditions.
Secondary Raynaud's has a number of associations:
- Connective tissue disorders:
- scleroderma
- systemic lupus erythematosus
- rheumatoid arthritis
- Sjögren's syndrome
- dermatomyositis
- polymyositis
- mixed connective tissue disease
- cold agglutinin disease
- Ehlers-Danlos syndrome
- Eating disorders:
- anorexia nervosa
- Obstructive disorders:
- atherosclerosis
- Buerger's disease
- Takayasu's arteritis
- subclavian aneurysms
- thoracic outlet syndrome
- Drugs:
- beta-blockers
- cytotoxic drugs – particularly chemotherapeutics and most especially bleomycin
- ciclosporin
- bromocriptine
- ergotamine
- sulfasalazine
- anthrax vaccines whose primary ingredient is the Anthrax Protective Antigen
- stimulant medications, such as those used to treat ADHD (amphetamine and methylphenidate)
- OTC pseudoephedrine medications (Chlor-Trimeton, Sudafed, others)
- Occupation:
- jobs involving vibration, particularly drilling and prolonged use of a String trimmer (weed whacker), suffer from vibration white finger
- exposure to vinyl chloride, mercury
- exposure to the cold (e.g., by working as a frozen food packer)
- Others:
- physical trauma, such as that sustained in auto accidents or other traumatic events
- Lyme disease
- hypothyroidism
- cryoglobulinemia
- malignancy
- chronic fatigue syndrome
- reflex sympathetic dystrophy
- carpal tunnel syndrome
- magnesium deficiency
- multiple sclerosis
- erythromelalgia (clinically presenting as the opposite of Raynaud's, with hot and warm extremities) often co-exists in patients with Raynaud's)
Raynaud's can "herald" these diseases by periods of more than twenty years in some cases, making it effectively their first presenting symptom. This may be the case in the CREST syndrome, of which Raynaud's is a part.
Patients with Secondary Raynaud's can also have symptoms related to their underlying diseases. Raynaud's phenomenon is the initial symptom that presents for 70% of patients with scleroderma, a skin and joint disease.
When Raynaud's phenomenon is limited to one hand or one foot, it is referred to as Unilateral Raynaud's. This is an uncommon form, and it is always secondary to local or regional vascular disease. It commonly progresses within several years to affect other limbs as the vascular disease progresses.