Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Retinal migraine is associated with transient monocular visual loss (scotoma) in one eye lasting less than one hour. During some episodes, the visual loss may occur with no headache and at other times throbbing headache on the same side of the head as the visual loss may occur, accompanied by severe light sensitivity and/or nausea. Visual loss tends to affect the entire monocular visual field of one eye, not both eyes. After each episode, normal vision returns.
It may be difficult to read and dangerous to drive a vehicle while retinal migraine symptoms are present.
Retinal migraine is a different disease than scintillating scotoma, which is a visual anomaly caused by spreading depression in the occipital cortex at the back of the brain, not in the eyes nor any component thereof. Unlike in retinal migraine, a scintillating scotoma involves repeated bouts of temporary diminished vision or blindness and affects vision from both eyes, upon which sufferers may see flashes of light, zigzagging patterns, blind spots, or shimmering spots or stars.
Many variations occur, but scintillating scotoma usually begins as a spot of flickering light near or in the center of the visual field, which prevents vision within the scotoma area. The affected area flickers but is not dark. It then gradually expands outward from the initial spot. Vision remains normal beyond the borders of the expanding scotoma(s), with objects melting into the scotoma area background similarly to the physiological blind spot, which means that objects may be seen better by not looking directly at them in the early stages when the spot is in or near the center. The scotoma area may expand to completely occupy one half of the visual area, or it may also be bilateral. It may occur as an isolated symptom without headache in acephalgic migraine.
As the scotoma area expands, some people perceive only a bright flickering area that obstructs normal vision, while others describe seeing various patterns. Some describe seeing one or more shimmering arcs of white or colored flashing lights. An arc of light may gradually enlarge, become more obvious, and may take the form of a definite zigzag pattern, sometimes called a fortification spectrum (i.e. teichopsia, from Greek τεῖχος, town wall), because of its resemblance to the fortifications of a castle or fort seen from above. It also can resemble the dazzle camouflage patterns used on ships in World War I. Others describe patterns within the arc as resembling Widmanstätten patterns.
The visual anomaly results from abnormal functioning of portions of the occipital cortex at the back of the brain, not in the eyes nor any component thereof, such as the retinas. This is a different disease from retinal migraine, which is monocular (only one eye).
It may be difficult to read and dangerous to drive a vehicle while the scotoma is present. Normal central vision may return several minutes before the scotoma disappears from peripheral vision.
Sufferers can keep a diary of dates on which the episodes occur to show to their physician, plus a small sketch of the anomaly, which may vary between episodes.
Animated depictions
Retinal migraine (also known as ophthalmic migraine, and ocular migraine) is a retinal disease often accompanied by migraine headache and typically affects only one eye. It is caused by ischaemia or vascular spasm in or behind the affected eye.
The terms "retinal migraine" and "ocular migraine" are often confused with "visual migraine", which is a far-more-common symptom of vision loss, resulting from the aura phase of the common migraine. The aura phase of migraine can occur with or without a headache. Ocular or retinal migraines happen in the eye, so only affect the vision in that eye, while visual migraines occur in the brain, so affect the vision in both eyes together. Visual migraines result from cortical spreading depression and are also commonly termed scintillating scotoma.
Symptoms typically appear gradually over 5 to 20 minutes and generally last fewer than 60 minutes, leading to the headache in classic migraine with aura, or resolving without consequence in acephalgic migraine. Many migraine sufferers change from scintillating scotoma as a prodrome to migraine to scintillating scotoma without migraine. The scotoma typically spontaneously resolves within the stated time frame, leaving few or no subsequent symptoms, though some report fatigue, nausea, and dizziness as sequelae.
Micropsia can occur during the aura phase of a migraine attack, a phase that often precedes the onset of a headache and is commonly characterized by visual disturbances. Micropsia, along with hemianopsia, quadrantopsia, scotoma, phosphene, teicopsia, metamorphopsia, macropsia, teleopsia, diplopia, dischromatopsia, and hallucination disturbances, is a type of aura that occurs immediately before or during the onset of a migraine headache. The symptom usually occurs less than thirty minutes before the migraine headache begins and lasts for five to twenty minutes. Only 10-20% of children with migraine headaches experience auras. Visual auras such as micropsia are most common in children with migraines.
Of all of the visual distortions, micropsia has the largest variety of causes.
Symptom-producing, or pathological, scotomata may be due to a wide range of disease processes, affecting any part of the visual system, including the retina (in particular its most sensitive portion, the macula), the optic nerve and even the visual cortex. A pathological scotoma may involve any part of the visual field and may be of any shape or size. A scotoma may include and enlarge the normal blind spot. Even a small scotoma that happens to affect central or macular vision will produce a severe visual disability, whereas a large scotoma in the more peripheral part of a visual field may go unnoticed by the bearer because of the normal reduced optical resolution in the peripheral visual field.
Common causes of scotomata include demyelinating disease such as multiple sclerosis (retrobulbar neuritis), damage to nerve fiber layer in the retina (seen as cotton wool spots) due to hypertension, toxic substances such as methyl alcohol, ethambutol and quinine, nutritional deficiencies, vascular blockages either in the retina or in the optic nerve, stroke or other brain injury, and macular degeneration, often associated with aging. Scintillating scotoma is a common visual aura in migraine. Less common, but important because they are sometimes reversible or curable by surgery, are scotomata due to tumors such as those arising from the pituitary gland, which may compress the optic nerve or interfere with its blood supply.
Rarely, scotomata are . One important variety of bilateral scotoma may occur when a pituitary tumour begins to compress the optic chiasm (as distinct from a single optic nerve) and produces a bitemporal paracentral scotoma, and later, when the tumor enlarges, the scotomas extend out to the periphery to cause the characteristic bitemporal hemianopsia. This type of visual-field defect tends to be obvious to the person experiencing it but often evades early objective diagnosis, as it is more difficult to detect by cursory clinical examination than the classical or textbook bitemporal peripheral hemianopia and may even elude sophisticated electronic modes of visual-field assessment.
In a pregnant woman, scotomata can present as a symptom of severe preeclampsia, a form of pregnancy-induced hypertension. Similarly, scotomata may develop as a result of the increased intracranial pressure that occurs in malignant hypertension.
The scotoma is also caused by the aminoglycoside antibiotics mainly by Streptomycin.
Cerebral polyopia is most often associated with occipital or temporal lobe lesions, as well as occipital lobe epilepsy. This condition is relatively uncommon, thus further research regarding its causes and mechanism has not been performed. Polyopia can be experienced as partial second or multiple images to either side (or in any eccentricity) of an object at fixation. Polyopia occurs when both eyes are open, or when one eye is open, during fixation on a stimulus. Known cases of polyopia provide evidence that, in relation to the stimulus at fixation, multiple images can appear at a constant distance in any direction; gaps in portions of an object at fixation can exist; multiple images can be overlaid vertically, horizontally, or diagonally on top of the stimulus; and the multiple images can appear different sizes, alignments, and complexities. The complexity of the stimulus does not appear to affect the clarity of the multiple images. The physical distance of the stimulus from the patient (near or far) also does not seem to affect the presence of multiple images. However, if the stimulus is swung or moved, multiple images of that object can either be extinguished or transformed into different objects, depending on the severity of the condition.
The onset of polyopia is not immediate upon perception of visual stimuli; rather, it occurs within milliseconds to seconds of fixation upon a stimulus. Polyopia has been described by patients as images “suddenly multiplying.” These multiple images can drift, fade, and disappear, depending on the severity of the condition. These episodes of polyopia can last from seconds to hours. In one specific case, a patient described difficulties reading due to letters “run[ning] together” and momentarily disappearing.
Most cases of polyopia are accompanied by another neurological condition. Polyopia is often accompanied by visual field defects (such as the presence of a scotoma) or transient visual hallucinations. Polyopic images often form in the direction and position of such visual field defects. Current research shows that when stimuli are close to the patient’s scotoma, the latency of polyopic images is much shorter than if the stimuli was far from the scotoma, and there is a higher probability that polyopic images will result.
Suppression of an eye is a subconscious adaptation by a person's brain to eliminate the symptoms of disorders of binocular vision such as strabismus, convergence insufficiency and aniseikonia. The brain can eliminate double vision by ignoring all or part of the image of one of the eyes. The area of a person's visual field that is suppressed is called the suppression scotoma (with a scotoma meaning, more generally, an area of partial alteration in the visual field). Suppression can lead to amblyopia.
Cerebral diplopia or polyopia describes seeing two or more images arranged in ordered rows, columns, or diagonals after fixation on a stimulus. The polyopic images occur monocular bilaterally (one eye open on both sides) and binocularly (both eyes open), differentiating it from ocular diplopia or polyopia. The number of duplicated images can range from one to hundreds. Some patients report difficulty in distinguishing the replicated images from the real images, while others report that the false images differ in size, intensity, or color. Cerebral polyopia is sometimes confused with palinopsia (visual trailing), in which multiple images appear while watching an object. However, in cerebral polyopia, the duplicated images are of a stationary object which are perceived even after the object is removed from the visual field. Movement of the original object causes all of the duplicated images to move, or the polyopic images disappear during motion. In palinoptic polyopia, movement causes each polyopic image to leave an image in its wake, creating hundreds of persistent images (entomopia).
Infarctions, tumors, multiple sclerosis, trauma, encephalitis, migraines, and seizures have been reported to cause cerebral polyopia. Cerebral polyopia has been reported in extrastriate visual cortex lesions, which is important for detecting motion, orientation, and direction. Cerebral polyopia often occurs in homonymous field deficits, suggesting deafferentation hyperexcitability could be a possible mechanism, similar to visual release hallucinations (Charles Bonnet syndrome).
Nobel-prize winner David H. Hubel described suppression in simple terms as follows:
Suppression is frequent in children with anisometropia or strabismus or both. For instance, children with infantile esotropia may alternate with which eye they look, each time suppressing vision in the other eye.
Many times, an optic pit is asymptomatic and is just an incidental finding on examination of the eye by a physician. However, some patients may present with the symptoms of a posterior vitreous detachment or serous retinal detachment. This is because optic pits are associated with these disorders and are even speculated to be the actual cause of these disorders when they arise in patients with optic pits (see "Associated Retinal Changes" below for a more in-depth discussion on this theory). The most common visual field defects include an enlarged blind spot and a scotoma. Visual acuity is typically not affected by the pit but may get worse if serous detachment of the macula occurs. Metamorphopsia (distorted vision) may then result.
Optic pits were first described in 1882 as dark gray depressions in the optic disc. They may, however, appear white or yellowish instead. They can also range greatly in size (e.g. some can be minuscule while others may be large enough as to occupy most of optic disc surface). Optic pits are associated with other abnormalities of the optic nerve including large optic nerve size, large inferior colobomas of the optic disc, and colobomas of the retina. The optic disc originates from the optic cup when the optic vesicle invaginates and forms an embryonic fissure (or groove). Optic pits may develop due to failure of the superior end of the embryonic fissure to close completely.
Hemianopsia or hemianopia is a visual field loss on the left or right side of the vertical midline. It can affect one eye but usually affects both eyes. Homonymous hemianopsia, or homonymous hemianopia, is hemianopic visual field loss on the same side of both eyes. Homonymous hemianopsia occurs because the right half of the brain has visual pathways for the left hemifield of both eyes, and the left half of the brain has visual pathways for the right hemifield of both eyes. When one of these pathways is damaged, the corresponding visual field is lost.
Mobility can be difficult for people with homonymous hemianopsia. “Patients frequently complain of bumping into obstacles on the side of the field loss, thereby bruising their arms and legs.”
People with homonymous hemianopsia often experience discomfort in crowds. “A patient with this condition may be unaware of what he or she cannot see and frequently bumps into walls, trips over objects or walks into people on the side where the visual field is missing.”
A related phenomenon is Hemispatial neglect, the possible neglect of the right or left. The patient is not conscious of its existence. The right side of the face is not shaven, make up is applied to one side of the face only and only half of a plate of food is eaten. This, however, is not necessarily due to a sensory abnormality, and is therefore distinct from hemianopsia.
Optic pit, optic nerve pit, or optic disc pit is a congenital excavation (or regional depression) of the optic disc (also optic nerve head), resulting from a malformation during development of the eye. Optic pits are important because they are associated with posterior vitreous detachments (PVD) and even serous retinal detachments.
The most common symptoms of cone dystrophy are vision loss (age of onset ranging from the late teens to the sixties), sensitivity to bright lights, and poor color vision. Therefore, patients see better at dusk. Visual acuity usually deteriorates gradually, but it can deteriorate rapidly to 20/200; later, in more severe cases, it drops to "counting fingers" vision. Color vision testing using color test plates (HRR series) reveals many errors on both red-green and blue-yellow plates.
Optic papillitis is a specific type of optic neuritis. Inflammation of the optic nerve head is called "papillitis" or "intraocular optic neuritis"; inflammation of the orbital portion of the nerve is called "retrobulbar optic neuritis" or "orbital optic neuritis". It is often associated with substantial losses in visual fields, pain on moving the globe, and sensitivity to light pressure on the globe. It is often an early sign of multiple sclerosis.
Papillitis may have the same appearance as papilledema. However, papillitis may be unilateral, whereas papilledema is almost always bilateral. Papillitis can be differentiated from papilledema by an afferent pupillary defect (Marcus Gunn pupil), by its greater effect in decreasing visual acuity and color vision, and by the presence of a central scotoma. Papilledema that is not yet chronic will not have as dramatic an effect on vision. Because increased intracranial pressure can cause both papilledema and a sixth (abducens) nerve palsy, papilledema can be differentiated from papillitis if esotropia and loss of abduction are also present. However, esotropia may also develop secondarily in an eye that has lost vision from papillitis. Retrobulbar neuritis, an inflamed optic nerve, but with a normal-appearing nerve head, is associated with pain and the other findings of papillitis. Pseudopapilledema is a normal variant of the optic disk, in which the disk appears elevated, with indistinct margins and a normal vascular pattern. Pseudopapilledema sometimes occurs in hyperopic individuals.
Workup of the patient with papillitis includes lumbar puncture and cerebrospinal fluid analysis. B henselae infection can be detected by serology. MRI is the preferred imaging study. An abnormal MRI is associated with a worse visual outcome.
A blind spot, scotoma, is an obscuration of the visual field. A particular blind spot known as the "physiological blind spot", "blind point", or "punctum caecum" in medical literature, is the place in the visual field that corresponds to the lack of light-detecting photoreceptor cells on the optic disc of the retina where the optic nerve passes through the optic disc. Because there are no cells to detect light on the optic disc, the corresponding part of the field of vision is invisible. Some process in our brains interpolates the blind spot based on surrounding detail and information from the other eye, so we do not normally perceive the blind spot.
Although all vertebrates have this blind spot, cephalopod eyes, which are only superficially similar, do not. In them, the optic nerve approaches the receptors from behind, so it does not create a break in the retina.
The first documented observation of the phenomenon was in the 1660s by Edme Mariotte in France. At the time it was generally thought that the point at which the optic nerve entered the eye should actually be the most sensitive portion of the retina; however, Mariotte's discovery disproved this theory.
The blind spot is located about 12–15° temporally and 1.5° below the horizontal and is roughly 7.5° high and 5.5° wide.
Classically the headache is unilateral, throbbing, and moderate to severe in intensity. It usually comes on gradually and is aggravated by physical activity. In more than 40% of cases, however, the pain may be bilateral and neck pain is commonly associated with it. Bilateral pain is particularly common in those who have migraines without an aura. Less commonly pain may occur primarily in the back or top of the head. The pain usually lasts 4 to 72 hours in adults, however in young children frequently lasts less than 1 hour. The frequency of attacks is variable, from a few in a lifetime to several a week, with the average being about one a month.
The pain is frequently accompanied by nausea, vomiting, sensitivity to light, sensitivity to sound, sensitivity to smells, fatigue and irritability. In a basilar migraine, a migraine with neurological symptoms related to the brain stem or with neurological symptoms on both sides of the body, common effects include a sense of the world spinning, light-headedness, and confusion. Nausea occurs in almost 90% of people, and vomiting occurs in about one-third. Many thus seek a dark and quiet room. Other symptoms may include blurred vision, nasal stuffiness, diarrhea, frequent urination, pallor, or sweating. Swelling or tenderness of the scalp may occur as can neck stiffness. Associated symptoms are less common in the elderly.
Rarely, an aura occurs without a subsequent headache. This is known as an acephalgic migraine or silent migraine; however, it is difficult to assess the frequency of such cases because people who do not experience symptoms severe enough to seek treatment may not realize that anything unusual is happening to them and pass it off without reporting any problems.
An aura is a transient focal neurological phenomenon that occurs before or during the headache. Auras appear gradually over a number of minutes and generally last less than 60 minutes. Symptoms can be visual, sensory or motor in nature and many people experience more than one. Visual effects occur most frequently; they occur in up to 99% of cases and in more than 50% of cases are not accompanied by sensory or motor effects.
Vision disturbances often consist of a scintillating scotoma (an area of partial alteration in the field of vision which flickers and may interfere with a person's ability to read or drive). These typically start near the center of vision and then spread out to the sides with zigzagging lines which have been described as looking like fortifications or walls of a castle. Usually the lines are in black and white but some people also see colored lines. Some people lose part of their field of vision known as hemianopsia while others experience blurring.
Sensory aurae are the second most common type; they occur in 30–40% of people with auras. Often a feeling of pins-and-needles begins on one side in the hand and arm and spreads to the nose–mouth area on the same side. Numbness usually occurs after the tingling has passed with a loss of position sense. Other symptoms of the aura phase can include speech or language disturbances, world spinning, and less commonly motor problems. Motor symptoms indicate that this is a hemiplegic migraine, and weakness often lasts longer than one hour unlike other auras. Auditory hallucinations or delusions have also been described.
Acephalgic migraines can occur in individuals of any age. Some individuals, more commonly male, only experience acephalgic migraine, but frequently patients also experience migraine with headache. Generally, the condition is more than twice as likely to occur in females than males. Pediatric acephalgic migraines are listed along with other childhood periodic syndromes by W.A. Al-Twaijri and M.I. Shevell as "migraine equivalents" (although not listed as such in the "International Classification of Headache Disorders"), which can be good predictors of the future development of typical migraines. Individuals who experience acephalgic migraines in childhood are highly likely to develop typical migraines as they grow older. Among women, incidents of acephalgic migraine increase during perimenopause.
Scintillating scotoma is the most common symptom which usually happens concurrently with Expanding Fortification Spectra. Also frequently reported is monocular blindness. Acephalgic migraines typically do not persist more than a few hours and may last for as little as 15 seconds. On rare occasions, they may continue for up to two days.
Acephalgic migraines may resemble transient ischemic attacks or, when longer in duration, stroke. The concurrence of other symptoms such as photophobia and nausea can help in determining the proper diagnosis. Occasionally, patients with acephalgic migraine are misdiagnosed as suffering epilepsy with visual seizures, but the reverse misdiagnosis is more common.
Multiple evanescent white dot syndrome (MEWDS) is an uncommon inflammatory condition of the retina that typically affects otherwise healthy young females in the second to fourth decades of life.
The typical patient with MEWDS is a healthy middle aged female age 15-50. There is a gender disparity as women are affected with MEWDS four times more often than men. Roughly 30% of patients have experienced an associated viral prodrome. Patients present with acute, painless, unilateral change in vision.
Patients present with acute unilateral decreased vision, photopsias and central or paracentral scotoma. An antecedent viral prodrome occurs in approximately one-third of cases. Myopia is commonly seen in patients.
Eye exam during the acute phase of the disease reveals multiple discrete white to orange spots at the level of the RPE or deep retina, typically in a perifoveal location (around the fovea).
Chiasmal syndrome is the set of signs and symptoms that are associated with lesions of the optic chiasm, manifesting as various impairments of the sufferer's visual field according to the location of the lesion along the optic nerve. Pituitary adenomas are the most common cause; however, chiasmal syndrome may be caused by cancer, or associated with other medical conditions such as multiple sclerosis and neurofibromatosis.