Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Some early signs of HIBMs includes:
- Difficulty walking on heels, and difficulty running;
- Weak index finger;
- Frequent loss of balance.
- On muscle biopsy, the typical finding includes inclusion bodies, rimmed vacuoles and accumulation of aberrant proteins similar to those found in senile plaques of Alzheimer's disease (amyloid beta, hyperphosphorylated tau, amongst others)
How sIBM affects individuals is quite variable as is the age of onset (which generally varies from the forties upwards). Because sIBM affects different people in different ways and at different rates, there is no "textbook case."
Eventually, sIBM results in general, progressive muscle weakness. The muscles in the thighs called the quadriceps and the muscles in the arms that control finger flexion—making a fist—are usually affected early on. Common early symptoms include frequent tripping and falling, weakness going up stairs and trouble manipulating the fingers (including difficulty with tasks such as turning doorknobs or gripping keys). Foot drop in one or both feet has been a symptom of IBM and advanced stages of polymyositis (PM).
During the course of the illness, the patient's mobility is progressively restricted as it becomes hard for him or her to bend down, reach for things, walk quickly and so on. Many patients say they have balance problems and fall easily, as the muscles cannot compensate for an off-balanced posture. Because sIBM makes the leg muscles weak and unstable, patients are very vulnerable to serious injury from tripping or falling down. Although pain has not been traditionally part of the "textbook" description, many patients report severe muscle pain, especially in the thighs.
When present, difficulty swallowing (dysphagia) is a progressive condition in those with inclusion body myositis and often leads to death from aspiration pneumonia. Dysphagia is present in 40 to 85% of IBM cases.
IBM can also result in diminished capacity for aerobic exercise. This decline is most likely a consequence of the sedentary lifestyle that is often associated with the symptoms of IBM (i.e. progressive muscle weakness, decreased mobility, and increased level of fatigue). Therefore, one focus of treatment should be the improvement of aerobic capacity.
Patients with sIBM usually eventually need to resort to a cane or a walker and in most cases, a wheelchair eventually becomes a necessity.
"The progressive course of s-IBM leads slowly to severe disability. Finger functions can become very impaired, such as for manipulating pens, keys, buttons, and zippers, pulling handles, and firmly grasping handshakes. Arising from a chair becomes difficult. Walking becomes more precarious. Sudden falls, sometimes resulting in major injury to the skull or other bones, can occur, even from walking on minimally-irregular ground or from other minor imbalances outside or in the home, due to weakness of quadriceps and gluteus muscles depriving the patient of automatic posture maintenance. A foot-drop can increase the likelihood of tripping. Dysphagia can occur, usually caused by upper esophageal constriction that often can be symptomatically improved, for several months to years, by bougie dilation per a GI or ENT physician. Respiratory muscle weakness can sometimes eventuate."
Hereditary inclusion body myopathies (HIBM) are a heterogeneous group of very rare genetic disorders which have different symptoms. Generally, they are neuromuscular disorders characterized by muscle weakness developing in young adults. Hereditary inclusion body myopathies comprise both autosomal recessive and autosomal dominant muscle disorders that have a variable expression (phenotype) in individuals, but all share similar structural features in the muscles.
HIBMs are a group of muscle wasting disorders, which are uncommon in the general world population. One autosomal recessive form of HIBM is known as IBM2 or GNE myopathy, which is a common genetic disorder amongst people of Iranian Jewish descent. IBM2 has also been identified in other minorities throughout the world, including people of Asian (Japanese and others), European, and South American origin, as well as Muslim people in the Middle Eastern, Palestinian, and Iranian origin. In Japan and many East Asian countries, this disorder is known as Distal Myopathy with Rimmed Vacuoles (DMRV).
IBM2 causes progressive muscle weakness and wasting. Muscle wasting usually starts around the age of 20 – 30 years, although young onset at 17 and old onset at 52 has been recorded. As such, it affects the most productive times of our lives. It can progress to marked disability within 10 – 15 years, confining many people with IBM2 to a wheelchair. The weakness and severity can vary from person to person. In some, weakness in the legs is noticed first. In few others, the hands are weakened more rapidly than the legs. Weakness is progressive, which means the muscle becomes weaker over time. IBM2 does not seem to affect the brain, internal organs or sensation. The quadriceps are relatively spared, and remain strong until the late stages of disease, which is the reason IBM2 is often referred to as Quadriceps Sparing Myopathy (QSM).
Inclusion body myositis (IBM) is an inflammatory muscle disease characterized by slowly progressive weakness and wasting of both distal and proximal muscles, most apparent in the muscles of the arms and legs. There are two types: sporadic inclusion body myositis (sIBM), which is more common, and hereditary inclusion body myopathy (hIBM).
In sporadic inclusion body myositis [MY-oh-sigh-tis], two processes, one autoimmune and the other degenerative, appear to occur in the muscle cells in parallel. The inflammation aspect is characterized by the cloning of T cells that appear to be driven by specific antigens to invade muscle fibers. The degeneration aspect is characterized by the appearance of holes in the muscle cell vacuoles, deposits of abnormal proteins within the cells and in filamentous inclusions (hence the name inclusion body myositis).
Weakness comes on slowly (over months or years) and progresses steadily and usually leads to severe weakness and wasting of arm and leg muscles. It is more common in men than women. Patients may become unable to perform activities of daily living and most require assistive devices within 5 to 10 years of symptom onset. sIBM is not considered a disorder, but the risk of serious injury due to falls is increased. One common and potentially fatal complication is dysphagia. There is no effective treatment for the disease.
sIBM is a rare yet increasingly prevalent disease and is the most common cause of inflammatory myopathy in people over age 50. Recent research from Australia indicates that the incidence of IBM varies in different populations and ethnic groups. The authors found that the current prevalence was 14.9 per million in the overall population, with a prevalence of 51.3 per million population in people over 50 years of age. As seen in these numbers, sIBM is an age-related disease – its incidence increases with age and symptoms usually begin after 50 years of age. It is the most common acquired muscle disorder seen in people over 50, although about 20% of cases display symptoms before the age of 50.
Onset usually occurs within the first two decades of life, commonly in the teenage years or the twenties. Life expectancy is normal. High arch of the foot (pes cavus) is common. Patients also have trouble controlling their hands, due to muscle loss on the thumb side of the index finger and palm below the thumb. It is rare for a person with this disorder to lose the ability to walk, though changes in gait may occur later in life.
Frequency of this disorder is unknown.
Symptoms of the Roussy–Lévy syndrome mainly stem from nerve damage and the resulting progressive muscle atrophy. Neurological damage may result in absent tendon reflexes (areflexia), some distal sensory loss and decreased excitability of muscles to galvanic and faradic stimulation. Progressive muscle wasting results in weakness of distal limb muscles (especially the peronei), gait ataxia, pes cavus, postural tremors and static tremor of the upper limbs, kyphoscoliosis, and foot deformity.
These symptoms frequently translate into delayed onset of ability to walk, loss of coordination and balance, foot drop, and foot-bone deformities. They are usually first observed during infancy or early childhood, and slowly progress until about age 30, at which point progression may stop in some individuals, or symptoms may continue to slowly progress.
Attention to respiratory issues is critical to the health of all people with NM. Infants with severe NM frequently experience respiratory distress at or soon after birth. Many are ventilated via tracheostomy, and with proper breathing assistance they may attain good health. Though respiratory compromise may not be immediately apparent in people with intermediate or mild NM, it nearly always exists to some extent. As in many neuromuscular disorders, hypoventilation can begin insidiously, and it may cause serious health problems if not remedied by the use of noninvasive mechanical devices to assist breathing, particularly at night.
Most children with mild NM eventually walk independently, although often at a later age than their peers. Some use wheelchairs or other devices, such as walkers or braces, to enhance their mobility. Individuals with severe NM generally have limited limb movement and use wheelchairs full-time.
Because of weakness in the trunk muscles, people with NM are prone to scoliosis, which usually develops in childhood and worsens during puberty. Many individuals with NM undergo spinal fusion surgery to straighten and stabilize their backs. Osteoporosis is also common in NM.
Although patients early on often have mobility in their joints that is past the normal range, as they age, joint deformities and scoliosis usually occur. If the person with nemaline myopathy keeps an eye on his or her joints early on, the problems with them can be detected when they begin and their progression can be delayed. Treatment of joint problems ranges from stretching exercises with physical therapy to surgical introduction of braces. The benefits of exercise in people with nemaline myopathy are still being studied, however, researchers have seen improvements in muscle function from low-intensity exercise. Vigorous exercise and the use of heavy weights should be avoided.
In an individual with dHMN V, electromyography will show pure motor neuropathy, patterns of weakness without upper motor neuron damage, in the hands. Tendon reflexes will also appear normal. Clinical, electrophysiological, and pathological testing will show a lack of damage to sensory neurons, differentiating this disease from CMT.
The incidence of this disease is not precisely known but it is considered to be rare (< 1/10 population). It has been reported in 15 families to date mostly from Canada, Finland and France.
This disease usually presents between the ages of 5 to 10 years old. The usual picture is with weakness involving the upper legs and affects activities such as running and climbing stairs. As the condition progresses, patients tend to experience weakness in their lower legs and arms. Some remain able to walk in advanced age, while others require assistance in adulthood.
The symptoms of CCD are variable, but usually involve hypotonia (decreased muscle tone) at birth, mild delay in child development (highly variable between cases), weakness of the facial muscles, and skeletal malformations such as scoliosis and hip dislocation.
Symptoms may be present at birth or may appear at any stage of life. There appears to be a growing number of people who do not become symptomatic until adulthood to middle age. While generally not progressive, again there appears to be a growing number of people who do experience a slow clinically significant progression of symptomatology. These cases may hypothetically be due to the large number of gene mutations of ryanodine receptor malfunction, and with continued research may in fact be found to be clinical variants.
The prolonged muscle contractions, which occur most commonly in the leg muscles in recessive mutations, and more commonly in the hands, face, and eyelids in dominant mutations, are often enhanced by inactivity, and in some forms are relieved by repetitive movement known as "the warm-up effect". This effect often diminishes quickly with rest. Some individuals with myotonia congenita are prone to falling as a result of hasty movements or an inability to stabilize themselves after a loss of balance. During a fall, a person with myotonia congenita may experience partial or complete rigid paralysis that will quickly resolve once the event is over. However, a fall into cold water may render the person unable to move for the duration of submergence. As with myotonic goats, children are more prone to falling than adults, due to their impulsivity.
The two major types of myotonia congenita are distinguished by the severity of their symptoms and their patterns of inheritance. Becker disease usually appears later in childhood than Thomsen disease, and causes more severe myotonia, muscle stiffness and transient weakness. Although myotonia in itself is not normally associated with pain, cramps or myalgia may develop. People with Becker disease often experience temporary attacks of muscle weakness, particularly in the arms and hands, brought on by movement after periods of rest. They may also develop mild, permanent muscle weakness over time. This muscle weakness is not observed in people with Thomsen disease. However, in recent times, as more of the individual mutations that cause myotonia congenita are identified, these limited disease classifications are becoming less widely used.
Early symptoms in a child may include:
- Difficulty swallowing
- Gagging
- Stiff movements that improve when they are repeated
- Frequent falling
- Difficulties opening eyelids after strenuous contraction or crying (von Graefe's sign)
Possible complications may include:
- Aspiration pneumonia (caused by swallowing difficulties)
- Frequent choking or gagging in infants (also caused by swallowing difficulties)
- Abdominal muscle weakness
- Chronic joint problems
- Injury due to falls
Many patients report that temperature may affect the severity of symptoms, especially cold as being an aggravating factor. However, there is some scientific debate on this subject, and some even report that cold may alleviate symptoms.
Symptoms depend on the type of HSP inherited. The main feature of the disease is progressive spasticity in the lower limbs due to pyramidal tract dysfunction. This also results in brisk reflexes, extensor plantar reflexes, muscle weakness, and variable bladder disturbances. Furthermore, among the core symptoms of HSP are also included abnormal gait and difficulty in walking, decreased vibratory sense at the ankles, and paresthesia.
Initial symptoms are typically difficulty with balance, stubbing the toe or stumbling. Symptoms of HSP may begin at any age, from infancy to older than 60 years. If symptoms begin during the teenage years or later, then spastic gait disturbance usually progresses over many years. Canes, walkers, and wheelchairs may eventually be required, although some people never require assistance devices.
More specifically, patients with the autosomal dominant pure form of HSP reveal normal facial and extraocular movement. Although jaw jerk may be brisk in older subjects, there is no speech disturbance or difficulty of swallowing. Upper extremity muscle tone and strength are normal. In the lower extremities, muscle tone is increased at the hamstrings, quadriceps and ankles. Weakness is most notable at the iliopsoas, tibialis anterior, and to a lesser extent, hamstring muscles.
In the complex form of the disorder, additional symptoms are present. These include: peripheral neuropathy, amyotrophy, ataxia, mental retardation, ichthyosis, epilepsy, optic neuropathy, dementia, deafness, or problems with speech, swallowing or breathing.
Anita Harding classified the HSP in a pure and complicated form. Pure HSP presents with spasticity in the lower limbs, associated with neurogenic bladder disturbance as well as lack of vibration sensitivity (pallhypesthesia). On the other hand, HSP is classified as complex when lower limb spasticity is combined with any additional neurological symptom.
This classification is subjective and patients with complex HSPs are sometimes diagnosed as having cerebellar ataxia with spasticity, mental retardation (with spasticity), or leukodystrophy. Some of the genes listed below have been described in other diseases than HSP before. Therefore, some key genes overlap with other disease groups.
Congenital myopathy is a very broad term for any muscle disorder present at birth. This defect primarily affects skeletal muscle fibres and causes muscular weakness and/or hypotonia. Congenital myopathies account for one of the top neuromuscular disorders in the world today, comprising approximately 6 in 100,000 live births every year. As a whole, congenital myopathies can be broadly classified as follows:
- A distinctive abnormality in skeletal muscle fibres on the cellular level; observable via light microscope
- Symptoms of muscle weakness and hypotonia
- Is a congenital disorder, meaning it occurs during development and symptoms present themselves at birth or in early life.
- Is a genetic disorder.
The onset of this disease is usually noticed in childhood, but often not diagnosed until the third or fourth decade of life. Symptoms include exercise intolerance with muscle pain, early fatigue, painful cramps, and myoglobin in the urine (often provoked by a bout of exercise). Myoglobinuria may result from the breakdown of skeletal muscle known as rhabdomyolysis, a condition in which muscle cells breakdown, sending their contents into the bloodstream.
Patients may exhibit a “second wind” phenomenon. This is characterized by the patient’s better tolerance for aerobic exercise such as walking and cycling after approximately 10 minutes. This is attributed to the combination of increased blood flow and the ability of the body to find alternative sources of energy, like fatty acids and proteins. In the long term, patients may exhibit renal failure due to the myoglobinuria, and with age, patients may exhibit progressively increasing weakness and substantial muscle loss.
Patients may present at emergency rooms with severe fixed contractures of the muscles and often severe pain. These require urgent assessment for rhabdomyolysis as in about 30% of cases this leads to acute renal failure. Left untreated this can be life-threatening. In a small number of cases compartment syndrome has developed, requiring prompt surgical referral.
Patients typically complain of muscle stiffness that can continue to focal weakness. This muscle stiffness cannot be walked off, in contrast to myotonia congenita. These symptoms are increased (and sometimes induced) in cold environments. For example, some patients have reported that eating ice cream leads to a stiffening of the throat. For other patients, exercise consistently induces symptoms of myotonia or weakness. Typical presentations of this are during squatting or repetitive fist clenching. Some patients also indicate that specific foods are able to induce symptoms of paramyotonia congenita. Isolated cases have reported that carrots and watermelon are able to induce these symptoms. The canonical definition of this disorder precludes permanent weakness in the definition of this disorder. In practice, however, this has not been strictly adhered to in the literature.
This form differs from the infantile principally in the relative lack of cardiac involvement. The onset is more insidious and has a slower progression. Cardiac involvement may occur but is milder than in the infantile form. Skeletal involvement is more prominent with a predilection for the lower limbs.
Late onset features include impaired cough, recurrent chest infections, hypotonia, progressive muscle weakness, delayed motor milestones, difficulty swallowing or chewing and reduced vital capacity.
Prognosis depends on the age of onset on symptoms with a better prognosis being associated with later onset disease.
X-linked myopathy with excessive autophagy (XMEA) is a rare childhood onset disease characterized by slow progressive vacuolation and atrophy of skeletal muscle. There is no known cardiac or intellectual involvement.
Roussy–Lévy syndrome, also known as Roussy–Lévy hereditary areflexic dystasia, is a rare genetic disorder of humans that results in progressive muscle wasting. It is caused by mutations in the genes that code for proteins necessary for the functioning of the myelin sheath of the neurons, affecting the conductance of nerve signals and resulting in loss of muscles' ability to move.
The condition affects people from infants through adults and is inherited in an autosomal dominant manner. Currently, no cure is known for the disorder.
The infantile form usually comes to medical attention within the first few months of life. The usual presenting features are cardiomegaly (92%), hypotonia (88%), cardiomyopathy (88%), respiratory distress (78%), muscle weakness (63%), feeding difficulties (57%) and failure to thrive (50%).
The main clinical findings include floppy baby appearance, delayed motor milestones and feeding difficulties. Moderate hepatomegaly may be present. Facial features include macroglossia, wide open mouth, wide open eyes, nasal flaring (due to respiratory distress), and poor facial muscle tone. Cardiopulmonary involvement is manifested by increased respiratory rate, use of accessory muscles for respiration, recurrent chest infections, decreased air entry in the left lower zone (due to cardiomegaly), arrhythmias and evidence of heart failure.
Median age at death in untreated cases is 8.7 months and is usually due to cardiorespiratory failure.
Because of the extreme variability of the disease, an authoritative and scientifically confirmed set of symptoms does not yet exist. The prevalence is widely placed at 1/20,000, but the exact prevalence is not known. A November 2008 report from Orpha.net, an organization backed by the Institut National de la Santé et de la Recherche Médicale (INSERM), listed a prevalence of 7/100,000, but the May 2014 version of this report places the prevalence at 4/100,000. A 2014 population-based study in the Netherlands reported a significantly higher prevalence of 12 in 100,000.[4]
Symptoms:
- Facial muscle weakness (eyelid drooping, inability to whistle, decreased facial expression, depressed or angry facial expression, difficulty pronouncing the letters M, B, and P)
- Shoulder weakness (difficulty working with the arms raised, sloping shoulder)
- Hearing loss
- Abnormal heart rhythm
- Unequal weakening of the biceps, triceps, deltoids, and lower arm muscles
- Loss of strength in abdominal muscles (causing a protuberant abdomen and lumbar lordosis) and eventual progression to the legs
- Foot drop
This inherited disease is characterized by violent muscle twitching and substantial muscle weakness or paralysis among affected horses. HYPP is a dominant genetic disorder; therefore, heterozygotes bred to genotypically normal horses have a statistic probability of producing clinically affected offspring 50% of the time.
Horses with HYPP can be treated with some possibility of reducing clinical signs, but the degree that medical treatment helps varies from horse to horse. There is no cure. Horses with HYPP often lose muscle control during an attack.
Some horses are more affected by the disease than others and some attacks will be more severe than others, even in the same horse. Symptoms of an HYPP attack may include:
- Muscle trembling
- Prolapse of the third eyelid — this means that the third eyelid flickers across the eye or covers more of the eye than normal
- Generalized weakness
- Weakness in the hind end — the horse may look as though it is 'dog-sitting'
- Complete collapse
- Abnormal whinny — because the muscles of the voicebox are affected as well as other muscles
- Death — in a severe attack the diaphragm is paralyzed and the horse can suffocate
HYPP attacks occur randomly and can strike a horse standing calmly in a stable just as easily as during exercise. Following an HYPP attack, the horse appears normal and is not in any pain which helps to distinguish it from Equine Exertional Rhabdomyolysis (ER), commonly known as "Azoturia," "Monday Morning Sickness" or "tying up." Horses that are tying up usually suffer attacks in connection with exercise and may take anywhere from 12 hours to several days to recover. Muscle tissue is damaged in an attack of ER, and the horse will be in pain during and following an attack. A blood test will reveal elevations in certain muscle enzymes after an episode of ER and so the two diseases, while superficially similar, are easily distinguished from one another in the laboratory.
Unlike with seizures, horses with HYPP are fully conscious and lucid during an attack. Horses may suffocate during an HYPP attack due to paralysis of the respiratory system. Horses that collapse during an episode are clearly distressed as they repeatedly struggle to get to their feet. If this occurs while the horse is being ridden or otherwise handled, the human handler or rider may be at risk of being injured by the movement of the horse.
Multicore myopathy, also referred to as minicore myopathy, is associated with small areas of decreased oxidative activities, resulting in areas that appear in this histology as “cores”. These appear through microscopy very similar to central core, however the cores are typically smaller in multicore myopathy. As with congenital fiber type disproportion, patients have a greater number of type 1 fibers. Overall, approximately half of diagnosed individuals report no progression of muscle weakness, while half report a very slow progression.
Muscular atrophy decreases qualities of life as the sufferer becomes unable to perform certain tasks or worsen the risks of accidents while performing those (like walking). Muscular atrophy increases the risks of falling in conditions such as inclusion body myositis (IBM) . Muscular atrophy affects a high number of the elderly.