Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Transneuronal degeneration can be grouped into two general categories: anterograde and retrograde.
This is the least severe form of nerve injury, with complete recovery. In this case, the axon remains intact, but there is myelin damage causing an interruption in conduction of the impulse down the nerve fiber. Most commonly, this involves compression of the nerve or disruption to the blood supply (ischemia). There is a temporary loss of function which is reversible within hours to months of the injury (the average is 6–9 weeks). Wallerian degeneration does not occur, so recovery does not involve actual regeneration. There is frequently greater involvement of motor than sensory function with autonomic function being retained. In electrodiagnostic testing with nerve conduction studies, there is a normal compound motor action potential amplitude distal to the lesion at day 10, and this indicates a diagnosis of mild neuropraxia instead of axonotmesis or neurotmesis.
Transneuronal degeneration is the death of neurons resulting from the disruption of input from or output to other nearby neurons. It is an active excitotoxic process when a neuron is overstimulated by a neurotransmitter (most commonly glutamate) causing the dysfunction of that neuron (either damaging it or killing it) which drives neighboring neurons into metabolic deficit, resulting in rapid, widespread loss of neurons. This can be either anterograde or retrograde, indicating the direction of the degeneration relative to the original site of damage (see types). There are varying causes for transneuronal degeneration such as brain lesions, disconnection syndromes, respiratory chain deficient neuron interaction, and lobectomies. Although there are different causes, transneuronal degeneration generally results in the same effects (whether they be cellular, dendritic, or axonal) to varying degrees. Transneuronal degeneration is thought to be linked to a number of diseases, most notably Huntington's disease and Alzheimer's disease, and researchers recently have been performing experiments with monkeys and rats, monitoring lesions in different parts of the body to study more closely how exactly the process works.
Symptoms of HNA may include pain in the back, neck, arms, or shoulders, nerve pulls in the arms or back, muscular atrophy, and weakness.
HNA is an episodic disorder; it is characterized by episodes generally lasting 1–6 weeks. During an episode, the nerves of the brachial plexus are targeted by the body as antigens, and the body's immune system begins to degenerate the nerves of the brachial plexus. The exact order or location of the nerve degeneration cannot be predicted before an episode. Other areas of the nervous system that have been affected are the phrenic nerves and the recurrent laryngeal. As the nerves lose function, the muscles associated with those nerves begin to atrophy. In brachial plexus degeneration, atrophy may occur in the deltoid muscles. In phrenic nerve degeneration, the diaphragm may be affected. In this case, breathing can be impaired due to a lack of muscle control of the diaphragm. If the recurrent larangyl nerve is targeted, the pharynx will begin to atrophy and voice function may be lost.
Nerve injury is injury to nervous tissue. There is no single classification system that can describe all the many variations of nerve injury. In 1941, Seddon introduced a classification of nerve injuries based on three main types of nerve fiber injury and whether there is continuity of the nerve. Usually, however, (peripheral) nerve injury is classified in five stages, based on the extent of damage to both the nerve and the surrounding connective tissue, since supporting glial cells may be involved. Unlike in the central nervous system, neuroregeneration in the peripheral nervous system is possible. The processes that occur in peripheral regeneration can be divided into the following major events: Wallerian degeneration, axon regeneration/growth, and nerve reinnervation. The events that occur in peripheral regeneration occur with respect to the axis of the nerve injury. The proximal stump refers to the end of the injured neuron that is still attached to the neuron cell body; it is the part that regenerates. The distal stump refers to the end of the injured neuron that is still attached to the end of the axon; it is the part of the neuron that will degenerate but that remains in the area toward which the regenerating axon grows. The study of peripheral nerve injury began during the American Civil War and has greatly expanded to the point of using growth-promoting molecules.
Sensory symptoms are gradually followed by motor symptoms. Motor symptoms may include muscle cramps and weakness, erectile dysfunction in men, problems urinating, constipation, and diarrhea. Individuals also may experience muscle wasting and decreased or absent deep tendon reflexes. Some people may experience frequent falls and gait unsteadiness due to ataxia. This ataxia may be caused by cerebellar degeneration, sensory ataxia, or distal muscle weakness. Over time, alcoholic polyneuropathy may also cause difficulty swallowing (dysphagia), speech impairment (disarthria), muscle spasms, and muscle atrophy.
In addition to alcoholic polyneuropathy, the individual may also show other related disorders such as Wernicke-Korsakoff syndrome and cerebellar degeneration that result from alcoholism-related nutritional disorders.
Some of the most prevalent symptom types in people exhibiting CBD pertain to identifiable movement disorders and problems with cortical processing. These symptoms are initial indicators of the presence of the disease. Each of the associated movement complications typically appear asymmetrically and the symptoms are not observed uniformly throughout the body. For example, a person exhibiting an alien hand syndrome (explained later) in one hand, will not correspondingly display the same symptom in the contralateral limb. Predominant movement disorders and cortical dysfunctions associated with CBD include:
- Parkinsonism
- Alien hand syndrome
- Apraxia (ideomotor apraxia and limb-kinetic apraxia)
- Aphasia
Because CBD is progressive, a standard set of diagnostic criteria can be used, which is centered on the disease’s evolution. Included in these fundamental features are problems with cortical processing, dysfunction of the basal ganglia, and a sudden and detrimental onset. Psychiatric and cognitive dysfunctions, although present in CBD, are much less prevalent and lack establishment as common indicators of the presence of the disease.
Common manifestations of sensory issues include numbness or painful sensations in the arms and legs, abnormal sensations like “pins and needles,” and heat intolerance. Pain experienced by individuals depends on the severity of the polyneuropathy. It may be dull and constant in some individuals while being sharp and lancinating in others. In many subjects, tenderness is seen upon the palpitation of muscles in the feet and legs. Certain people may also feel cramping sensations in the muscles affected and others say there is a burning sensation in their feet and calves.
Wallerian degeneration is a process that results when a nerve fiber is cut or crushed and the part of the axon distal to the injury (i.e. farther from the neuron's cell body) degenerates. This is also known as anterograde or orthograde degeneration. A related process known as 'Wallerian-like degeneration' occurs in many neurodegenerative diseases, especially those where axonal transport is impaired. Primary culture studies suggest that a failure to deliver sufficient quantities of the essential axonal protein NMNAT2 is a key initiating event.
Wallerian degeneration occurs after axonal injury in both the peripheral nervous system (PNS) and central nervous system (CNS). It occurs in the axon stump distal to a site of injury and usually begins within 24–36 hours of a lesion. Prior to degeneration, distal axon stumps tend to remain electrically excitable. After injury, the axonal skeleton disintegrates, and the axonal membrane breaks apart. The axonal degeneration is followed by degradation of the myelin sheath and infiltration by macrophages. The macrophages, accompanied by Schwann cells, serve to clear the debris from the degeneration.
Schwann cells respond to loss of axons by extrusion of their myelin sheaths, downregulation of myelin genes, dedifferentiation and proliferation. They finally align in tubes (Büngner bands) and express surface molecules that guide regenerating fibers. Within 4 days of the injury, the distal end of the portion of the nerve fiber proximal to the lesion sends out sprouts towards those tubes and these sprouts are attracted by growth factors produced by Schwann cells in the tubes. If a sprout reaches the tube, it grows into it and advances about 1 mm per day, eventually reaching and reinnervating the target tissue. If the sprouts cannot reach the tube, for instance because the gap is too wide or scar tissue has formed, surgery can help to guide the sprouts into the tubes. Regeneration is efficient in the PNS, with near complete recovery in case of lesions that occur close to the distal nerve terminal. However recovery is hardly observed at all in the spinal cord. One crucial difference is that in the CNS, including the spinal cord, myelin sheaths are produced by oligodendrocytes and not by Schwann cells.
Post-encephalitic Parkinsonism is a disease believed to be caused by a viral illness that triggers degeneration of the nerve cells in the substantia nigra. Overall, this degeneration leads to clinical parkinsonism.
Historically, starting in 1917 an epidemic of encephalitis lethargica, also called von Economo’s encephalitis or "sleepy-disease" occurred, possibly related to the 1918 Spanish flu pandemic; however, even with the use of modern molecular diagnostic tests on appropriate corpses no firm link between encephalitis lethargica with influenza has been made. Although parkinsonism was occasionally seen during the acute
encephalitic phase of encephalitis lethargica, it was often encountered in the post-encephalitic phase. The onset of post encephalitic
parkinsonism can be delayed by several years from the resolution of encephalitis lethargica.
The brain regions affected contain neurofibrillary tangles, similar to those seen in Alzheimer's disease. Nevertheless, the senile plaques common in Alzheimer's disease are not found.
Neurodegeneration is the progressive loss of structure or function of neurons, including death of neurons. Many neurodegenerative diseases – including amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's – occur as a result of neurodegenerative processes. Such diseases are incurable, resulting in progressive degeneration and/or death of neuron cells. As research progresses, many similarities appear that relate these diseases to one another on a sub-cellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate many diseases simultaneously. There are many parallels between different neurodegenerative disorders including atypical protein assemblies as well as induced cell death. Neurodegeneration can be found in many different levels of neuronal circuitry ranging from molecular to systemic.
Tauopathy belongs to a class of neurodegenerative diseases associated with the pathological aggregation of tau protein in neurofibrillary or gliofibrillary tangles in the human brain. Tangles are formed by hyperphosphorylation of a microtubule-associated protein known as tau, causing it to aggregate in an insoluble form. (These aggregations of hyperphosphorylated tau protein are also referred to as paired helical filaments). The precise mechanism of tangle formation is not completely understood, and it is still controversial as to whether tangles are a primary causative factor in the disease or play a more peripheral role. Primary tauopathies, i.e., conditions in which neurofibrillary tangles (NFT) are predominantly observed, include:
- Primary age-related tauopathy (PART)/Neurofibrillary tangle-predominant senile dementia, with NFTs similar to AD, but without plaques.
- Chronic traumatic encephalopathy, including dementia pugilistica
- Progressive supranuclear palsy
- Corticobasal degeneration
- Frontotemporal dementia and parkinsonism linked to chromosome 17
- Lytico-Bodig disease (Parkinson-dementia complex of Guam)
- Ganglioglioma and gangliocytoma
- Meningioangiomatosis
- Postencephalitic parkinsonism
- Subacute sclerosing panencephalitis
- As well as lead encephalopathy, tuberous sclerosis, Hallervorden-Spatz disease, and lipofuscinosis
Neurofibrillary tangles were first described by Alois Alzheimer in one of his patients suffering from Alzheimer's disease (AD), which is considered a secondary tauopathy. AD is also classified as an amyloidosis because of the presence of senile plaques.
The degree of NFT involvement in AD is defined by Braak stages. Braak stages I and II are used when NFT involvement is confined mainly to the transentorhinal region of the brain, stages III and IV when there's also involvement of limbic regions such as the hippocampus, and V and VI when there's extensive neocortical involvement. This should not be confused with the degree of senile plaque involvement, which progresses differently.
In both Pick's disease and corticobasal degeneration, tau proteins are deposited as inclusion bodies within swollen or "ballooned" neurons.
Argyrophilic grain disease (AGD), another type of dementia, is marked by an abundance of argyrophilic grains and coiled bodies upon microscopic examination of brain tissue. Some consider it to be a type of Alzheimer's disease. It may co-exist with other tauopathies such as progressive supranuclear palsy and corticobasal degeneration, and also Pick's disease.
Huntington's disease (HD): a neurodegenerative disease caused by a CAG tripled expansion in the Huntington gene is the most recently described tauopathy (Fernandez-Nogales et al. Nat Med 2014). JJ Lucas and co-workers demonstrate that, in brains with HD, tau levels are increased and the 4R/3R balance is altered. In addition, the Lucas study shows intranuclear insoluble deposits of tau; these "Lucas' rods" were also found in brains with Alzheimer's disease.
Tauopathies are often overlapped with synucleinopathies, possibly due to interaction between the synuclein and tau proteins.
The non-Alzheimer's tauopathies are sometimes grouped together as "Pick's complex" due to their association with frontotemporal dementia, or frontotemporal lobar degeneration.
FTD is traditionally difficult to diagnose due to the heterogeneity of the associated symptoms. Signs and symptoms are classified into three groups based on the functions of the frontal and temporal lobes:
- Behavioural variant frontotemporal dementia (BvFTD) is characterized by changes in social behavior and conduct, with loss of social awareness and poor impulse control.
- Semantic dementia (SD) is characterized by the loss of semantic understanding, resulting in impaired word comprehension, although speech remains fluent and grammatically faultless.
- Progressive nonfluent aphasia (PNFA) is characterized by progressive difficulties in speech production.
However, the following abilities in the person with FTD are preserved:
- Perception
- Spatial Skills
- Memory
- Praxis
In later stages of FTD, the clinical phenotypes may overlap. FTD patients tend to struggle with binge eating and compulsive behaviors. These binge eating habits are often associated with abnormal eating behavior including overeating, stuffing oneself with food, changes in food preferences (cravings for more sweets, carbohydrates), eating inedible objects and snatching food from others. Recent findings from structural MRI research have indicated that eating changes in FTD are associated with atrophy (wasting) in the right ventral insula, striatum, and orbitofrontal cortex.
Patients with FTD show marked deficiencies in executive functioning and working memory. Most FTD patients become unable to perform skills that require complex planning or sequencing. In addition to the characteristic cognitive dysfunction, a number of primitive reflexes known as frontal release signs are often able to be elicited. Usually the first of these frontal release signs to appear is the palmomental reflex which appears relatively early in the disease course whereas the palmar grasp reflex and rooting reflex appear late in the disease course.
In rare cases, FTD can occur in patients with motor neuron disease (MND) (typically amyotrophic lateral sclerosis). The prognosis for people with MND is worse when combined with FTD, shortening survival by about a year.
Frontotemporal dementia (FTD) is the clinical presentation of frontotemporal lobar degeneration, which is characterized by progressive neuronal loss predominantly involving the frontal or temporal lobes, and typical loss of over 70% of spindle neurons, while other neuron types remain intact.
It was first described by Arnold Pick in 1892 and was originally called "Pick's disease", a term now reserved for Pick disease, one specific type of frontotemporal dementia. Second only to Alzheimer's disease (AD) in prevalence, FTD accounts for 20% of young-onset dementia cases. Signs and symptoms typically manifest in late adulthood, more commonly between the ages of 55 and 65, approximately equally affecting men and women.
Common signs and symptoms include significant changes in social and personal behavior, apathy, blunting of emotions, and deficits in both expressive and receptive language. Currently, there is no cure for FTD, but there are treatments that help alleviate symptoms.
Zenker's degeneration is a severe glassy or waxy hyaline degeneration or necrosis of skeletal muscles in acute infectious diseases ;a prototype of coagulative necrosis.
The condition was named by Friedrich Albert von Zenker. It is a hyaline degeneration of skeletal muscles such as rectus abdominis and diaphragm, and occurs in severe toxaemia as typhoid fever. It is also seen in electrical burns. Grossly the muscles appear pale and friable; microscopically, the muscle fibres are swollen, have a loss of cross striations, and show a hyaline appearance. Rupture and small hemorrhage may complicate the lesion. Coagulative necrosis occurs here.
Terrien marginal degeneration is a noninflammatory, unilateral or asymmetrically bilateral, slowly progressive thinning of the peripheral corneal stroma.
The cause of Terrien marginal degeneration is unknown, its prevalence is roughly equal between males and females, and it usually occurs in the second or third decade of life.
Progressive nonfluent aphasia (PNFA) is one of three clinical syndromes associated with frontotemporal lobar degeneration. PNFA has an insidious onset of language deficits over time as opposed to other stroke-based aphasias, which occur acutely following trauma to the brain. The specific degeneration of the frontal and temporal lobes in PNFA creates hallmark language deficits differentiating this disorder from other Alzheimer-type disorders by the initial absence of other cognitive and memory deficits. This disorder commonly has a primary effect on the left hemisphere, causing the symptomatic display of expressive language deficits (production difficulties) and sometimes may disrupt receptive abilities in comprehending grammatically complex language.
WE is characterized by the presence of a triad of symptoms;
1. Ocular disturbances (ophthalmoplegia)
2. Changes in mental state (confusion)
3. Unsteady stance and gait (ataxia)
This triad of symptoms results from a deficiency in vitamin B which is an essential coenzyme. The aforementioned changes in mental state occur in approximately 82% of patients' symptoms of which range from confusion, apathy, inability to concentrate, and a decrease in awareness of the immediate situation they are in. If left untreated, WE can lead to coma or death. In about 29% of patients, ocular disturbances consist of nystagmus and paralysis of the lateral rectus muscles or other muscles in the eye. A smaller percentage of patients experience a decrease in reaction time of the pupils to light stimuli and swelling of the optic disc which may be accompanied by retinal hemorrhage. Finally, the symptoms involving stance and gait occur in about 23% of patients and result from dysfunction in the cerebellum and vestibular system. Other symptoms that have been present in cases of WE are stupor, low blood pressure (hypotension), elevated heart rate (tachycardia), as well as hypothermia, epileptic seizures and a progressive loss of hearing.
Interestingly, about 19% of patients have none of the symptoms in the classic triad at first diagnosis of WE; however, usually one or more of the symptoms develops later as the disease progresses.
Pick's disease is a term that can be used in two different ways. It has traditionally been used as a term for a group of neurodegenerative diseases with symptoms attributable to frontal and temporal lobe dysfunction. Common symptoms that are noticed early are personality and emotional changes, as well as deterioration of language. This condition is now more commonly called frontotemporal dementia by professionals, and the use of "Pick's disease" as a clinical diagnosis has fallen out of fashion. The second use of the term (and the one now used among professionals) is to mean a specific pathology that is one of the causes of frontotemporal lobar degeneration. These two uses have previously led to confusion among professionals and patients and so its use should be restricted to the specific pathological subtype described below. It is also known as Pick disease and PiD (not to be confused with pelvic inflammatory disease (PID) or Parkinson's disease (PD)). A defining characteristic of the disease is build-up of tau proteins in neurons, accumulating into silver-staining, spherical aggregations known as "Pick bodies".
Signs and symptoms of macular degeneration include:
- Visual symptoms
- Distorted vision in the form of metamorphopsia, in which a grid of straight lines appears wavy and parts of the grid may appear blank: Patients often first notice this when looking at things like miniblinds in their home or telephone poles while driving. There may also be central scotomas, shadows or missing areas of vision
- Slow recovery of visual function after exposure to bright light (photostress test)
- Visual acuity drastically decreasing (two levels or more), e.g.: 20/20 to 20/80
- Blurred vision: Those with nonexudative macular degeneration may be asymptomatic or notice a gradual loss of central vision, whereas those with exudative macular degeneration often notice a rapid onset of vision loss (often caused by leakage and bleeding of abnormal blood vessels).
- Trouble discerning colors, specifically dark ones from dark ones and light ones from light ones
- A loss in contrast sensitivity
Macular degeneration by itself will not lead to total blindness. For that matter, only a very small number of people with visual impairment are totally blind. In almost all cases, some vision remains, mainly peripheral. Other complicating conditions may possibly lead to such an acute condition (severe stroke or trauma, untreated glaucoma, etc.), but few macular degeneration patients experience total visual loss.
The area of the macula comprises only about 2.1% of the retina, and the remaining 97.9% (the peripheral field) remains unaffected by the disease. Even though the macula provides such a small fraction of the visual field, almost half of the visual cortex is devoted to processing macular information.
The loss of central vision profoundly affects visual functioning. It is quite difficult, for example, to read without central vision. Pictures that attempt to depict the central visual loss of macular degeneration with a black spot do not really do justice to the devastating nature of the visual loss. This can be demonstrated by printing letters six inches high on a piece of paper and attempting to identify them while looking straight ahead and holding the paper slightly to the side. Most people find this difficult to do.
Memory disorders are the result of damage to neuroanatomical structures that hinders the storage, retention and recollection of memories. Memory disorders can be progressive, including Alzheimer's disease, or they can be immediate including disorders resulting from head injury.
Agnosia is the inability to recognize certain objects, persons or sounds. Agnosia is typically caused by damage to the brain (most commonly in the occipital or parietal lobes) or from a neurological disorder. Treatments vary depending on the location and cause of the damage. Recovery is possible depending on the severity of the disorder and the severity of the damage to the brain. Many more specific types of agnosia diagnoses exist, including: associative visual agnosia, astereognosis, auditory agnosia, auditory verbal agnosia, prosopagnosia, simultanagnosia, topographical disorientation, visual agnosia etc.
Wallerian degeneration is named after Augustus Volney Waller. Waller experimented on frogs in 1850, by severing their glossopharyngeal and hypoglossal nerves. He then observed the distal nerves from the site of injury,
which were separated from their cell bodies in the brain stem.
Waller described the disintegration of myelin, which he referred to as "medulla", into separate particles of various sizes. The degenerated axons formed droplets that could be stained, thus allowing studies of the course of individual nerve fibres.