Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms of Leydig cell hypoplasia include pseudohermaphroditism (i.e., feminized, ambiguous, or relatively mildly underdeveloped (e.g., micropenis, severe hypospadias, and/or cryptorchidism (undescended testes)) external genitalia), a female gender identity or gender variance, hypergonadotropic hypogonadism (hypogonadism despite high levels of gonadotropins), delayed, impaired, or fully absent puberty with an associated reduction in or complete lack of development of secondary sexual characteristics (sexual infantilism), impaired fertility or complete sterility, tall stature (due to delayed epiphyseal closure), eunuchoid skeletal proportions, delayed or absent bone maturation, and osteoporosis.
Leydig cell hypoplasia (or aplasia) (LCH), also known as Leydig cell agenesis, is a rare autosomal recessive genetic and endocrine syndrome affecting an estimated 1 in 1,000,000 genetic males. It is characterized by an inability of the body to respond to luteinizing hormone (LH), a gonadotropin which is normally responsible for signaling Leydig cells of the testicles to produce testosterone and other androgen sex hormones. The condition manifests itself as pseudohermaphroditism (partially or fully underdeveloped genitalia), hypergonadotropic hypogonadism (decreased or lack of production of sex steroids by the gonads despite high circulating levels of gonadotropins), reduced or absent puberty (lack of development of secondary sexual characteristics, resulting in sexual infantilism if left untreated), and infertility.
Leydig cell hypoplasia does not occur in biological females as they do not have either Leydig cells or testicles. However, the cause of the condition in males, luteinizing hormone insensitivity, does affect females, and because LH plays a role in the female reproductive system, it can result in primary amenorrhea or oligomenorrhea (absent or reduced menstruation), infertility due to anovulation, and ovarian cysts.
A related condition is follicle-stimulating hormone (FSH) insensitivity, which presents with similar symptoms to those of Leydig cell hypoplasia but with the symptoms in the respective sexes reversed (i.e., hypogonadism and sexual infantilism in females and merely problems with fertility in males). Despite their similar causes, FSH insensitivity is considerably less common in comparison to LH insensitivity.
Individuals with mild (or minimal) androgen insensitivity syndrome (grade 1 on the Quigley scale) are born phenotypically male, with fully masculinized genitalia; this category of androgen insensitivity is diagnosed when the degree of androgen insensitivity in an individual with a 46,XY karyotype is great enough to impair virilization or spermatogenesis, but is not great enough to impair normal male genital development. MAIS is the mildest and least known form of androgen insensitivity syndrome.
The existence of a variant of androgen insensitivity that solely affected spermatogenesis was theoretical at first. Cases of phenotypically normal males with isolated spermatogenic defect due to AR mutation were first detected as the result of male infertility evaluations. Until then, early evidence in support of the existence of MAIS was limited to cases involving a mild defect in virilization, although some of these early cases made allowances for some degree of impairment of genital masculinization, such as hypospadias or micropenis. It is estimated that 2-3% of infertile men have AR gene mutations.
Examples of MAIS phenotypes include isolated infertility (oligospermia or azoospermia), mild gynecomastia in young adulthood, decreased secondary terminal hair, high pitched voice, or minor hypospadias repair in childhood. The external male genitalia (penis, scrotum, and urethra) are otherwise normal in individuals with MAIS. Internal genitalia, including Wolffian structures (the epididymides, vasa deferentia, and seminal vesicles) and the prostate, is also normal, although the bitesticular volume of infertile men (both with and without MAIS) is diminished; male infertility is associated with reduced bitesticular volume, varicocele, retractile testes, low ejaculate volume, male accessory gland infections (MAGI), and mumps orchitis. The incidence of these features in infertile men with MAIS is similar to that of infertile men without MAIS. MAIS is not associated with Müllerian remnants.
Individuals with complete androgen insensitivity syndrome (grades 6 and 7 on the Quigley scale) are born phenotypically female, without any signs of genital masculinization, despite having a 46,XY karyotype. Symptoms of CAIS do not appear until puberty, which may be slightly delayed, but is otherwise normal except for absent menses and diminished or absent secondary terminal hair. Axillary hair (i.e. armpit hair) fails to develop in one third of all cases. External genitalia is normal, although the labia and clitoris are sometimes underdeveloped. The vaginal depth varies widely, but is typically shorter than unaffected women; one study of eight women with CAIS measured the average vaginal depth to be 5.9 cm (vs. 11.1 ± 1.0 cm for unaffected women ). In some extreme cases, the vagina has been reported to be aplastic (resembling a "dimple"), though the exact incidence of this is unknown.
The gonads in these women are not ovaries, but instead, are testes; during the embryonic stage of development, testes form in an androgen-independent process that occurs due to the influence of the SRY gene on the Y chromosome. They may be located intra-abdominally, at the internal inguinal ring, or may herniate into the labia majora, often leading to the discovery of the condition. Testes in affected women have been found to be atrophic upon gonadectomy. Testosterone produced by the testes cannot be directly used due to the mutant androgen receptor that characterizes CAIS; instead, it is aromatized into estrogen, which effectively feminizes the body and accounts for the normal female phenotype observed in CAIS.
Immature sperm cells in the testes do not mature past an early stage, as sensitivity to androgens is required in order for spermatogenesis to complete. Germ cell malignancy risk, once thought to be relatively high, is now thought to be approximately 2%. Wolffian structures (the epididymides, vasa deferentia, and seminal vesicles) are typically absent, but will develop at least partially in approximately 30% of cases, depending on which mutation is causing the CAIS. The prostate, like the external male genitalia, cannot masculinize in the absence of androgen receptor function, and thus remains in the female form.
The Müllerian system (the fallopian tubes, uterus, and upper portion of the vagina) typically regresses due to the presence of anti-Müllerian hormone originating from the Sertoli cells of the testes. These women are thus born without fallopian tubes, a cervix, or a uterus, and the vagina ends "blindly" in a pouch. Müllerian regression does not fully complete in approximately one third of all cases, resulting in Müllerian "remnants". Although rare, a few cases of women with CAIS and fully developed Müllerian structures have been reported. In one exceptional case, a 22-year-old with CAIS was found to have a normal cervix, uterus, and fallopian tubes. In an unrelated case, a fully developed uterus was found in a 22-year-old adult with CAIS.
Other subtle differences that have been reported include slightly longer limbs and larger hands and feet due to a proportionally greater stature than unaffected women, larger teeth, minimal or no acne, well developed breasts, and a greater incidence of meibomian gland dysfunction (i.e. dry eye syndromes and light sensitivity).
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a severe neurodegenerative syndrome that is associated with a particular mutation of the androgen receptor's polyglutamine tract called a trinucleotide repeat expansion. SBMA results when the length of the polyglutamine tract exceeds 40 repetitions.
Although technically a variant of MAIS, SBMA's presentation is not typical of androgen insensitivity; symptoms do not occur until adulthood and include neuromuscular defects as well as signs of androgen inaction. Neuromuscular symptoms include progressive proximal muscle weakness, atrophy, and fasciculations. Symptoms of androgen insensitivity experienced by men with SBMA are also progressive and include testicular atrophy, severe oligospermia or azoospermia, gynecomastia, and feminized skin changes despite elevated androgen levels. Disease onset, which usually affects the proximal musculature first, occurs in the third to fifth decades of life, and is often preceded by muscular cramps on exertion, tremor of the hands, and elevated muscle creatine kinase. SBMA is often misdiagnosed as amyotrophic lateral sclerosis (ALS) (also known as Lou Gehrig's disease).
The symptoms of SBMA are thought to be brought about by two simultaneous pathways involving the toxic misfolding of proteins and loss of AR functionality. The polyglutamine tract in affected pedigrees tends to increase in length over generations, a phenomenon known as "anticipation", leading to an increase in the severity of the disease as well as a decrease in the age of onset for each subsequent generation of a family affected by SBMA.
Mutations that result in some residual 21-hydroxylase activity cause milder disease, traditionally termed simple virilizing CAH (SVCAH). In these children the mineralocorticoid deficiency is less significant and salt-wasting does not occur. However, genital ambiguities are possible.
Individuals with 5-ARD are born with male gonads, including testicles and Wolffian structures. They can have normal male external genitalia, ambiguous genitalia, or normal female genitalia, but usually tend towards a female appearance. As a consequence, they are often raised as girls, but usually have a male gender identity.
The development of the genital tubercle tissue (which by week 9 of a fetus' gestation becomes either a clitoris or a penis) tends towards a size qualifying it as an ambiguous macroclitoris/micropenis (large clitoris/small penis), and the urethra may attach to the phallus.
If the condition has not already been diagnosed, it usually becomes apparent at puberty around age twelve with primary amenorrhoea and virilization. This may include descending of the testes, hirsutism (facial/body hair considered normal in males - not to be confused with hypertrichosis), deepening of the voice, and enlargement of the clitoris into what would then be classed as a penis.
In adulthood, individuals do not experience male-pattern baldness. As DHT is a far more potent androgen than testosterone alone, virilization in those lacking DHT may be absent or reduced compared to males with functional 5-AR. It is hypothesized that rising testosterone levels at the start of puberty are able to generate sufficient levels of DHT either by the action of 5α-reductase type I (active in the adult liver, non-genital skin and some brain areas) or through the expression of low levels of 5α-reductase type II in the testes.
5-ARD is associated with an increased risk of cryptorchidism and testicular cancer.
The phenotypes that result from the insensitivity to androgens are not unique to AIS, thus the diagnosis of AIS requires thorough exclusion of other causes. Clinical findings indicative of AIS include the presence of a short vagina or undermasculinized genitalia, partial or complete regression of Müllerian structures, bilateral nondysplastic testes, and impaired spermatogenesis and/or virilization. Laboratory findings include a 46,XY karyotype and normal or elevated postpubertal testosterone, luteinizing hormone, and estradiol levels. The androgen binding activity of genital skin fibroblasts is typically diminished, although exceptions have been reported. Conversion of testosterone to dihydrotestosterone may be impaired. The diagnosis of AIS is confirmed if androgen receptor gene sequencing reveals a mutation, although not all individuals with AIS (particularly PAIS) will have an "AR" mutation (see Other Causes).
Each of the three types of AIS (complete, partial, and mild) has a different list of differential diagnoses to consider. Depending on the form of AIS suspected, the list of differentials can include:
Examples of symptoms of hypogonadism with underdevelopment of the Gonads (testicles and ovaries) include delayed, reduced, or absent puberty, low libido, and infertility.
The symptoms of isolated 17,20-lyase deficiency, in males, include pseudohermaphroditism (i.e., feminized, ambiguous, or mildly underdeveloped (e.g., micropenis, perineal hypospadias, and/or cryptorchidism (undescended testes)) external genitalia), female gender identity, and, in non-complete cases of deficiency where partial virilization occurs, gynecomastia up to Tanner stage V (due to low androgen levels, which results in a lack of suppression of estrogen); in females, amenorrhoea or, in cases of only partial deficiency, merely irregular menses, and enlarged cystic ovaries (due to excessive stimulation by high levels of gonadotropins); and in both sexes, hypergonadotropic hypogonadism (hypogonadism despite high levels of gonadotropins), delayed, impaired, or fully absent adrenarche and puberty with an associated reduction in or complete lack of development of secondary sexual characteristics (sexual infantilism), impaired fertility or complete sterility, tall stature (due to delayed epiphyseal closure), eunuchoid skeletal proportions, delayed or absent bone maturation, and osteoporosis.
All forms of androgen insensitivity, including CAIS, are associated with infertility, though exceptions have been reported for both the mild and partial forms.
CAIS is associated with a decreased bone mineral density. Some have hypothesized that the decreased bone mineral density observed in women with CAIS is related to the timing of gonadectomy and inadequate estrogen supplementation. However, recent studies show that bone mineral density is similar whether gonadectomy occurs before or after puberty, and is decreased despite estrogen supplementation, leading some to hypothesize that the deficiency is directly attributable to the role of androgens in bone mineralization.
CAIS is also associated with an increased risk for gonadal tumors (e.g. germ cell malignancy) in adulthood if gonadectomy is not performed. The risk of malignant germ cell tumors in women with CAIS increases with age and has been estimated to be 3.6% at 25 years and 33% at 50 years. The incidence of gonadal tumors in childhood is thought to be relatively low; a recent review of the medical literature found that only three cases of malignant germ cell tumors in prepubescent girls have been reported in association with CAIS in the last 100 years. Some have estimated the incidence of germ cell malignancy to be as low as 0.8% before puberty.
Vaginal hypoplasia, a relatively frequent finding in CAIS and some forms of PAIS, is associated with sexual difficulties including vaginal penetration difficulties and dyspareunia.
At least one study indicates that individuals with an intersex condition may be more prone to psychological difficulties, due at least in part to parental attitudes and behaviors, and concludes that preventative long-term psychological counseling for parents as well as for affected individuals should be initiated at the time of diagnosis.
Lifespan is not thought to be affected by AIS.
AIS is broken down into three classes based on phenotype: complete androgen insensitivity syndrome (CAIS), partial androgen insensitivity syndrome (PAIS), and mild androgen insensitivity syndrome (MAIS). A supplemental system of phenotypic grading that uses seven classes instead of the traditional three was proposed by pediatric endocrinologist Charmian A. Quigley et al. in 1995. The first six grades of the scale, grades 1 through 6, are differentiated by the degree of genital masculinization; grade 1 is indicated when the external genitalia is fully masculinized, grade 6 is indicated when the external genitalia is fully feminized, and grades 2 through 5 quantify four degrees of decreasingly masculinized genitalia that lie in the interim. Grade 7 is indistinguishable from grade 6 until puberty, and is thereafter differentiated by the presence of secondary terminal hair; grade 6 is indicated when secondary terminal hair is present, whereas grade 7 is indicated when it is absent. The Quigley scale can be used in conjunction with the traditional three classes of AIS to provide additional information regarding the degree of genital masculinization, and is particularly useful when the diagnosis is PAIS.
Examples of symptoms of hypogonadism include delayed, reduced, or absent puberty, low libido, and infertility.
Virilization of genetically female (XX) infants usually produces obvious genital ambiguity. Inside the pelvis, the ovaries are normal and since they have not been exposed to testicular antimullerian hormone (MIF), the uterus, fallopian tubes, upper vagina, and other mullerian structures are normally formed as well. However, the high levels of testosterone in the blood can enlarge the phallus, partially or completely close the vaginal opening, enclose the urethral groove so that it opens at the base of the phallus, on the shaft or even at the tip like a boy. Testosterone can cause the labial skin to become as thin and rugated as a scrotum, but cannot produce palpable gonads (i.e., testes) in the folds.
Thus, depending on the severity of hyperandrogenism, a female infant can be mildly affected, obviously ambiguous, or so severely virilized as to appear to be a male. Andrea Prader devised the following Prader scale as a way of describing the degree of virilization.
- An infant at stage 1 has a mildly large clitoris and slightly reduced vaginal opening size. This degree may go unnoticed or may be simply assumed to be within normal variation.
- Stages 2 and 3 represent progressively more severe degrees of virilization. The genitalia are obviously abnormal to the eye, with a phallus intermediate in size and a small vaginal opening.
- Stage 4 looks more male than female, with an empty scrotum and a phallus the size of a normal penis, but not quite free enough of the perineum to be pulled onto the abdomen toward the umbilicus (i.e., what is termed a chordee in a male). The single small urethral/vaginal opening at the base or on the shaft of the phallus would be considered a hypospadias in a male. X-rays taken after dye injection into this opening reveal the internal connection with the upper vagina and uterus. This common opening can predispose to urinary obstruction and infection.
- Stage 5 denotes complete male virilization, with a normally formed penis with the urethral opening at or near the tip. The scrotum is normally formed but empty. The internal pelvic organs include normal ovaries and uterus, and the vagina connects internally with the urethra as in Stage 4. These infants are not visibly ambiguous, and are usually assumed to be ordinary boys with undescended testes. In most cases, the diagnosis of CAH is not suspected until signs of salt-wasting develop a week later.
When the genitalia are determined to be ambiguous at birth, CAH is one of the leading diagnostic possibilities. Evaluation reveals the presence of a uterus, extreme elevation of 17OHP, levels of testosterone approaching or exceeding the male range but low AMH levels. The karyotype is that of an ordinary female: 46,XX. With this information, the diagnosis of CAH is readily made and female sex confirmed.
Evaluation of ambiguous genitalia is described in detail elsewhere. In most cases it is possible to confirm and assign female sex within 12–36 hours of birth. The exception are the rare, completely virilized genetic females (Prader stage 5), who present the most challenging assignment and surgery dilemmas, discussed below.
When the degree of ambiguity is obvious, corrective surgery is usually offered and performed. As reconstructive surgery on infant genitalia has become a focus of controversy, the issues are described in more detail below.
The appearance of XX males can fall into one of three categories: 1) males that have normal internal and external genitalia, 2) males with external ambiguities, and 3) males that have both internal and external genital ambiguities (true hermaphrodites). External genital ambiguities can include hypospadias, micropenis, and clitoromegaly. On average, the appearance of XX males differs from that of an XY male in that they are smaller in height and weight. Most XX males have small testes, are sterile, and have an increase in maldescended testicles compared to XY males. Some XX male individuals have decreased amounts of body hair and decreased libido. Individuals with this condition sometimes have feminine characteristics, with varying degrees of gynecomastia but with no intra-abdominal Müllerian tissue. According to research at the University of Oklahoma health science centers, despite XX males exhibiting feminine characteristics, their behaviours are usually representative of masculinity in their culture.
The condition may be due to:
- Turner syndrome, and its variations (i.e. mosaicism)
- XX gonadal dysgenesis, also pure gonadal dysgenesis, 46,XX
- Swyer syndrome, also pure gonadal dysgenesis, 46,XY
- Perrault syndrome, XX gonadal dysgenesis + sensorineural hearing loss
- Mixed gonadal dysgenesis
- Exposure to environmental endocrine disruptors
The symptoms of CAH vary depending upon the form of CAH and the sex of the patient. Symptoms can include:
Due to inadequate mineralocorticoids:
- vomiting due to salt-wasting leading to dehydration and death
Due to excess androgens:
- functional and average sized penis in cases involving extreme virilization (but no sperm)
- ambiguous genitalia, in some females, such that it can be initially difficult to identify external genitalia as "male" or "female".
- early pubic hair and rapid growth in childhood
- precocious puberty or failure of puberty to occur (sexual infantilism: absent or delayed puberty)
- excessive facial hair, virilization, and/or menstrual irregularity in adolescence
- infertility due to anovulation
- clitoromegaly, enlarged clitoris and shallow vagina
Due to insufficient androgens and estrogens:
- Undervirilization in XY males, which can result in apparently female external genitalia
- In females, hypogonadism can cause sexual infantilism or abnormal pubertal development, infertility, and other reproductive system abnormalities
In this situation the testes are abnormal, atrophic, or absent, and sperm production severely disturbed to absent. FSH levels tend to be elevated (hypergonadotropic) as the feedback loop is interrupted (lack of feedback inhibition on FSH). The condition is seen in 49–93% of men with azoospermia. Testicular failure includes absence of failure production as well as low production and maturation arrest during the process of spermatogenesis.
Causes for testicular failure include congenital issues such as in certain genetic conditions (e.g. Klinefelter syndrome), some cases of cryptorchidism or Sertoli cell-only syndrome as well as acquired conditions by infection (orchitis), surgery (trauma, cancer), radiation, or other causes. Mast cells releasing inflammatory mediators appear to directly suppress sperm motility in a potentially reversible manner, and may be a common pathophysiological mechanism for many causes leading to inflammation. Testicular azoospermia is a kind of non-obstructive azoospermia.
Generally, men with unexplained hypergonadotropic azoospermia need to undergo a chromosomal evaluation.
Gonadal dysgenesis is any congenital developmental disorder of the reproductive system characterized by a progressive loss of germ cells on the developing gonads of an embryo. This loss leads to extremely hypoplastic (underdeveloped) and dysfunctioning gonads mainly composed of fibrous tissue, hence the name streak gonads—i.e., a form of aplasia in which the ovary is replaced by functionless tissue. The accompanying hormonal failure also prevents the development of secondary sex characteristics in either sex, resulting in a sexually infantile female appearance and infertility.
The first type of gonadal dysgenesis discovered was Turner syndrome.
Hypergonadotropic hypogonadism (HH), also known as primary or peripheral/gonadal hypogonadism, is a condition which is characterized by hypogonadism due to an impaired response of the gonads to the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and in turn a lack of sex steroid production and elevated gonadotropin levels (as an attempt of compensation by the body). HH may present as either "congenital" or "acquired", but the majority of cases are of the former nature.
Pretesticular azoospermia is characterized by inadequate stimulation of otherwise normal testicles and genital tract. Typically, follicle-stimulating hormone (FSH) levels are low (hypogonadotropic) commensurate with inadequate stimulation of the testes to produce sperm. Examples include hypopituitarism (for various causes), hyperprolactinemia, and exogenous FSH suppression by testosterone. Chemotherapy may suppress spermatogenesis. Pretesticular azoospermia is seen in about 2% of azoospermia. Pretesticular azoospermia is a kind of non-obstructive azoospermia.
Hypogonadotropic hypogonadism (HH), also known as secondary or central hypogonadism, as well as gonadotropin-releasing hormone deficiency or gonadotropin deficiency (GD), is a condition which is characterized by hypogonadism due to an impaired secretion of gonadotropins, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH), by the pituitary gland in the brain, and in turn decreased gonadotropin levels and a resultant lack of sex steroid production.
Isolated 17,20-lyase deficiency (ILD), also called isolated 17,20-desmolase deficiency, is a rare endocrine and autosomal recessive genetic disorder which is characterized by a complete or partial loss of 17,20-lyase activity and, in turn, impaired production of the androgen and estrogen sex steroids. The condition manifests itself as pseudohermaphroditism (partially or fully underdeveloped genitalia) in males, in whom it is considered to be a form of intersex, and, in both sexes, as a reduced or absent puberty/lack of development of secondary sexual characteristics, resulting in a somewhat childlike appearance in adulthood (if left untreated).
Unlike the case of combined 17α-hydroxylase/17,20-lyase deficiency, isolated 17,20-lyase deficiency does not affect glucocorticoid production (or mineralocorticoid levels), and for that reason, does not result in adrenal hyperplasia or hypertension.
Congenital adrenal hyperplasia (CAH) are any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the biochemical steps of production of mineralocorticoids, glucocorticoids or sex steroids from cholesterol by the adrenal glands (steroidogenesis).
Most of these conditions involve excessive or deficient production of sex steroids and can alter development of primary or secondary sex characteristics in some affected infants, children, or adults.
Aromatase excess syndrome (AES or AEXS), also sometimes referred to as familial hyperestrogenism or familial gynecomastia, is a rare genetic and endocrine syndrome which is characterized by an overexpression of aromatase, the enzyme responsible for the biosynthesis of the estrogen sex hormones from the androgens, in turn resulting in excessive levels of circulating estrogens and, accordingly, symptoms of hyperestrogenism. It affects both sexes, manifesting itself in males as marked or complete phenotypical feminization (with the exception of the genitalia; i.e., no pseudohermaphroditism) and in females as hyperfeminization.
To date, 30 males and 8 females with AES among 15 and 7 families, respectively, have been described in the medical literature.