Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The differential diagnosis of HLH includes secondary HLH and macrophage-activation syndrome or other primary immunodeficiencies that present with hemophagocytic lymphohistiocytosis, such as X-linked lymphoproliferative disease.
Other conditions that may be confused with this condition include autoimmune lymphoproliferative syndrome. As a syndrome of intense inflammation it needs to be differentiated from sepsis, what may be extremely challenging.
The diagnosis of acquired, or secondary, HLH is usually made in association with infection by viruses, bacteria, fungi, or parasites or in association with lymphoma, autoimmune disease, or metabolic disease. Acquired HLH may have decreased, normal, or increased NK cell activity.
A major differential of HLH is Griscelli syndrome (type 2). This is a rare autosomal recessive disorder characterized by partial albinism, hepatosplenomegaly, pancytopenia, hepatitis, immunologic abnormalities, and lymphohistiocytosis. Most cases have been diagnosed between 4 months and 7 years of age, with a mean age of about 17 months.
Three types of Griscelli syndrome are recognised: Type 1 has neurologic symptoms and mutations in MYO5A. Prognosis depends on the severity of neurologic manifestations. Type 2 have mutations in RAB27A and haemophagocytic syndrome, with abnormal T-cell and macrophage activation. This type has a grave prognosis if untreated. Type 3 have mutations in melanophilin and are characterized by partial albinism. This type does not pose a threat to those so affected.
Sweet described a disease with four features: fever; leukocytosis; acute, tender, red plaques; and a dermal infiltrate of neutrophils. This led to the name acute febrile neutrophilic dermatosis. Larger series of patients showed that fever and neutrophilia are not consistently present. The diagnosis is based on the two constant features, a typical eruption and the characteristic histologic features; thus the eponym "Sweet's syndrome" is used.
Acute, tender, erythematous plaques, nodes, pseudovesicles and, occasionally, blisters with an annular or arciform pattern occur on the head, neck, legs, and arms, particularly the back of the hands and fingers. The trunk is rarely involved. Fever (50%); arthralgia or arthritis (62%); eye involvement, most frequently conjunctivitis or iridocyclitis (38%); and oral aphthae (13%) are associated features.
Hematologic diseases are disorders which primarily affect the blood. Hematology includes the study of these disorders.
The myeloproliferative neoplasms (MPNs), previously myeloproliferative diseases (MPDs), are a group of diseases of the bone marrow in which excess cells are produced. They are related to, and may evolve into, myelodysplastic syndrome and acute myeloid leukemia, although the myeloproliferative diseases on the whole have a much better prognosis than these conditions. The concept of myeloproliferative disease was first proposed in 1951 by the hematologist William Dameshek. In the most recent World Health Organization classification of hematologic malignancies, this group of diseases was renamed from "myeloproliferative diseases" to "myeloproliferative neoplasms". This reflects the underlying clonal genetic changes that are a salient feature of this group of disease.
The increased numbers of blood cells may not cause any symptoms, but a number of medical problems or symptoms may occur. The risk of thrombosis is increased in some types of MPN.
There are three main disorders caused by Hermansky–Pudlak syndrome, which result in these symptoms:
- Albinism and eye problems: Individuals will have varying amounts of skin pigment (melanin). Because of the albinism there are eye problems such as light sensitivity (photophobia), strabismus (crossed eyes), and nystagmus (involuntary eye movements). Hermansky–Pudlak syndrome also impairs vision.
- Bleeding disorders: Individuals with the syndrome have platelet dysfunction. Since platelets are necessary for blood clotting, individuals will bruise and bleed easily.
- Cellular storage disorders: The syndrome causes a wax-like substance (ceroid) to accumulate in the body tissues and cause damage, especially in the lungs and kidneys.
It is also associated with granulomatous colitis, an inflammation of the colon, and with pulmonary fibrosis, a potentially fatal lung disease.
Although not a malignant neoplasm like other cancers, MPNs are classified within the hematological neoplasms. There are four main myeloproliferative diseases, which can be further categorized by the presence of the Philadelphia chromosome:
In 2008, the World Health Organization listed these diagnoses as types of MPD:
- Chronic myelogenous leukemia (BCR-ABL1–positive)
- Chronic neutrophilic leukemia
- Polycythemia vera
- Primary myelofibrosis
- Essential thrombocythemia
- Chronic eosinophilic leukemia (not otherwise specified)
- Mastocytosis
This syndrome shows a wide range of abnormalities and symptoms. The main characteristics of the syndrome are exocrine pancreatic dysfunction, hematologic abnormalities and growth retardation. Only the first two of these are included in the clinical diagnostic criteria.
- Hematologic abnormalities: Neutropenia may be intermittent or persistent and is the most common hematological finding. Low neutrophil counts leave patients at risk of developing severe recurrent infections that may be life-threatening. Anemia (low red blood cell counts) and thrombocytopenia (low platelet counts) may also occur. Bone marrow is typically hypocellular, with maturation arrest in the myeloid lineages that give rise to neutrophils, macrophages, platelets and red blood cells. Patients may also develop progressive marrow failure or transform to acute myelogenous leukemia.
- Exocrine pancreatic dysfunction: Pancreatic exocrine insufficiency arises due to a lack of acinar cells that produce digestive enzymes. These are extensively depleted and replaced by fat. A lack of pancreatic digestive enzymes leaves patients unable to digest and absorb fat. However, pancreatic status may improve with age in some patients.
- Growth retardation: More than 50% of patients are below the third percentile for height, and short stature appears to be unrelated to nutritional status. Other skeletal abnormalities include metaphyseal dysostosis (45% of patients), thoracic dystrophy (rib cage abnormalities in 46% of patients), and costochondral thickening (shortened ribs with flared ends in 32% of patients). Skeletal problems are one of the most variable components of SDS, with 50% affected siblings from the same family discordant for clinical presentation or type of abnormality. Despite this, a careful review of radiographs from 15 patients indicated that all of them had at least one skeletal anomaly, though many were subclinical.
- Other features include metaphysial dysostosis, mild hepatic dysfunction, increased frequency of infections.
FA is characterized by bone marrow failure, AML, solid tumors, and developmental abnormalities. Classic features include abnormal thumbs, absent radii, short stature, skin hyperpigmentation, including café au lait spots, abnormal facial features (triangular face, microcephaly), abnormal kidneys, and decreased fertility. Many FA patients (about 30%) do not have any of the classic physical findings, but Diepoxybutane chromosome fragility assay showing increased chromosomal breaks can make the diagnosis. . About 80% of FA will develop bone marrow failure by age 20.
The first sign of a hematologic problem is usually petechiae and bruises, with later onset of pale appearance, feeling tired, and infections. Because macrocytosis usually precedes a low platelet count, patients with typical congenital anomalies associated with FA should be evaluated for an elevated red blood cell mean corpuscular volume.
Heřmanský–Pudlák syndrome (often written Hermansky–Pudlak syndrome or abbreviated HPS) is an extremely rare autosomal recessive disorder which results in oculocutaneous albinism (decreased pigmentation), bleeding problems due to a platelet abnormality (platelet storage pool defect), and storage of an abnormal fat-protein compound (lysosomal accumulation of ceroid lipofuscin).
It is considered to affect around 1 in 500,000 people worldwide, with a significantly higher occurrence in Puerto Ricans, with a prevalence of 1 in 1800. Many of the clinical research studies on the disease have been conducted in Puerto Rico.
There are eight classic forms of the disorder, based on the genetic mutation from which the disorder stems.
A common complaint among patients with cold agglutinin disease is painful fingers and toes with purplish discoloration associated with cold exposure. In chronic cold agglutinin disease, the patient is more symptomatic during the colder months.
Cold agglutinin mediated acrocyanosis differs from Raynaud phenomenon. In Raynaud phenomena, caused by vasospasm, a triphasic color change occurs, from white to blue to red, based on vasculature response. No evidence of such a response exists in cold agglutinin disease.
Other symptoms
- Respiratory symptoms: May be present in patients with "M pneumoniae" infection.
- Hemoglobinuria (the passage of dark urine that contains hemoglobin), A rare symptom that results from hemolysis, this may be reported following prolonged exposure to cold, hemoglobinuria is more commonly seen in paroxysmal cold hemoglobinuria.
- Chronic fatigue, Due to anemia.
Fanconi anaemia (FA) is a rare genetic disease resulting in impaired response to DNA damage. Although it is a very rare disorder, study of this and other bone marrow failure syndromes has improved scientific understanding of the mechanisms of normal bone marrow function and development of cancer. Among those affected, the majority develops cancer, most often acute myelogenous leukemia, and 90% develop bone marrow failure (the inability to produce blood cells) by age 40. About 60–75% of people have congenital defects, commonly short stature, abnormalities of the skin, arms, head, eyes, kidneys, and ears, and developmental disabilities. Around 75% of people have some form of endocrine problems, with varying degrees of severity.
FA is the result of a genetic defect in a cluster of proteins responsible for DNA repair.
Treatment with androgens and hematopoietic (blood cell) growth factors can help bone marrow failure temporarily, but the long-term treatment is bone marrow transplant if a donor is available. Because of the genetic defect in DNA repair, cells from people with FA are sensitive to drugs that treat cancer by DNA crosslinking, such as mitomycin C. The typical age of death was 30 years in 2000.
FA occurs in about one per 130,000 births, with a higher frequency in Ashkenazi Jews in Israel and Afrikaners in South Africa. The disease is named after the Swiss pediatrician who originally described this disorder, Guido Fanconi. It should not be confused with Fanconi syndrome, a kidney disorder also named after Fanconi.
Cold autoimmune hemolytic anemia caused by cold-reacting autoantibodies. Autoantibodies that bind to the erythrocyte membrane leading to premature erythrocyte destruction (hemolysis) characterize autoimmune hemolytic anemia.
Zeichi-Ceide syndrome is a rare disease discovered in 2007. It is named after its discoverer, R.M. Zeichi-Ceide, who observed three siblings born of consanguineous parents with distinctive characteristics, including facial anomalies, large feet, mental deficiency, and occipital atretic cephalocele. The investigators suspected the symptoms were caused by autosomal recessive inheritance.
As a rare disease, Zeichi-Ceide syndrome is registered in the Online Mendelian Inheritance in Man and the U.S. National Institutes of Health's Genetic and Rare Diseases databases.
A rare disease is any disease that affects a small percentage of the population. In some parts of the world, an orphan disease is a rare disease whose rarity means there's a lack of a market large enough to gain support and resources for discovering treatments for it, except by the government granting economically advantageous conditions to creating and selling such treatments. Orphan drugs are ones so created or sold.
Most rare diseases are genetic, and thus are present throughout the person's entire life, even if symptoms do not immediately appear. Many rare diseases appear early in life, and about 30 percent of children with rare diseases will die before reaching their fifth birthday. With a single diagnosed patient only, ribose-5-phosphate isomerase deficiency is considered the rarest genetic disease.
No single cutoff number has been agreed upon for which a disease is considered rare. A disease may be considered rare in one part of the world, or in a particular group of people, but still be common in another.
Global Genes have estimated that more than 300 million people worldwide are living with one of the 7,000 diseases they define as "rare" in the United States.
STEC-HUS occurs after ingestion of a strain of bacteria expressing Shiga toxin(s), usually types of "E. coli", that expresses verotoxin (also called Shiga-like toxin). "E. coli" can produce stx1 and/or stx2 Shiga toxins, the latter being more dangerous and a combination of both toxins in certain ratios is usually associated with HUS. These Shiga toxins bind GB3 receptors, globotriaosylceramide, which are present in renal tissue more than any other tissue and are also found in central nervous system neurons and other tissue. Children have more GB3 receptors than adults which may be why children are more susceptible to HUS. Cattle, swine, deer, and other mammals do not have GB3 receptors, but can be asymptomatic carriers of Shiga toxin-producing bacteria. Some humans can also be asymptomatic carriers. Once the bacteria colonizes, diarrhea followed by bloody diarrhea, hemorrhagic colitis, typically follows. HUS develops about 5–10 days after onset of diarrhea, with decreased urine output (oliguria), blood in the urine (hematuria), kidney failure, thrombocytopenia (low levels of platelets) and destruction of red blood cells (microangiopathic hemolytic anemia). Hypertension is common. In some cases, there are prominent neurologic changes.
Patients with HUS commonly exhibit the signs and symptoms of thrombotic microangiopathy (TMA), which can include abdominal pain, low platelet count, elevated lactate dehydrogenase LDH, a chemical released from damaged cells, and which is therefore a marker of cellular damage) decreased haptoglobin (indicative of the breakdown of red blood cells) anemia (low red blood cell count)/schistocytes (damaged red blood cells), elevated creatinine (a protein waste product generated by muscle metabolism and eliminated renally, proteinuria (indicative of kidney injury), confusion, fatigue, edema (swelling), nausea/vomiting, and diarrhea. Additionally, patients with aHUS typically present with an abrupt onset of systemic signs and symptoms such as acute kidney failure, hypertension (high blood pressure), myocardial infarction (heart attack), stroke, lung complications, pancreatitis (inflammation of the pancreas), liver necrosis (death of liver cells or tissue), encephalopathy (brain dysfunction), seizure, and coma. Failure of neurologic, cardiac, renal, and gastrointestinal (GI) organs, as well as death, can occur unpredictably at any time, either very quickly or following prolonged symptomatic or asymptomatic disease progression.
Hemolytic-uremic syndrome (or haemolytic-uraemic syndrome), abbreviated HUS, is a disease characterized by a triad of hemolytic anemia (anemia caused by destruction of red blood cells), acute kidney failure (uremia), and a low platelet count (thrombocytopenia). It predominantly, but not exclusively, affects children. Most cases are preceded by an episode of infectious, sometimes bloody, diarrhea acquired as a foodborne illness or from a contaminated water supply caused by , other non-O157:H7 "E. coli" serotypes, "Shigella", and "Campylobacter". A variety of viruses have also been implicated as a causative agent. It is now the most common cause of acquired acute renal failure in childhood. It is a medical emergency and carries a 5–10% mortality rate; of the remainder, the majority recover without major consequences, approximately 30% suffer residual renal injury. The primary target appears to be the vascular endothelial cell. This may explain the pathogenesis of HUS, in which a characteristic renal lesion is capillary microangiopathy.
HUS was first defined as a syndrome in 1955. The more common form of the disease, Shiga-like toxin-producing "E. coli" HUS (STEC-HUS), is triggered by the infectious agent "E. coli" O157:H7, and several other non-O157:H7 "E. coli" serotypes. Certain Shiga toxin-secreting strains of "Shigella dysenteriae" can also cause HUS. Approximately 5% of cases are classified as pneumococcal HUS, which results from infection by "Streptococcus pneumoniae", the agent that causes traditional lobar pneumonia. There is also a rare, chronic, and severe form known as atypical hemolytic uremic syndrome (aHUS), which is caused by genetic defects resulting in chronic, uncontrolled complement activation. Both STEC-HUS and aHUS cause endothelial damage, leukocyte activation, platelet activation, and widespread inflammation and multiple thromboses in the small blood vessels, a condition known as systemic thrombotic microangiopathy (TMA), which leads to thrombotic events as well as organ damage/failure and death.
Adult T-cell leukemia/lymphoma (ATL or ATLL) is a rare cancer of the immune system's own T-cells.
Human T cell leukemia/lymphotropic virus type 1 (HTLV-1) is believed to be the cause of it, in addition to several other diseases.
Franklin's disease (gamma heavy chain disease)
It is a very rare B-cell lymphoplasma cell proliferative disorder which may be associated with autoimmune diseases and infection is a common characteristic of the disease. It is characterized by lymphadenopathy, fever, anemia, malaise, hepatosplenomegaly, and weakness. The most distinctive symptom is palatal edema, caused by nodal involvement of Waldeyer's ring.
Diagnosis is made by the demonstration of an anomalous serum M component that reacts with anti-IgG but not anti-light chain reagents. Bone marrow examination is usually nondiagnostic.
Patients usually have a rapid downhill course and die of infection if left untreated or misdiagnosed.
Patients with Franklin disease usually have a history of progressive weakness, fatigue, intermittent fever, night sweats and weight loss and may present with lymphadenopathy (62%), splenomegaly (52%) or hepatomegaly (37%). The fever is considered secondary to impaired cellular and humoral immunity, and thus recurrent infections are the common clinical presentation in Franklin disease. Weng et al. described the first case of Penicillium sp. infection in a patient with Franklin disease and emphasized the importance of proper preparation for biopsy, complete hematologic investigation, culture preparation and early antifungal coverage to improve the outcome.
The γHCD can be divided into three categories based on the various clinical and pathological features. These categories are disseminated lymphoproliferative disease, localized proliferative disease and no apparent proliferative disease.
- Disseminated lymphoproliferative disease is found in 57-66% of patients diagnosed with γHCD. Lymphadenopathy and constitutional symptoms are the usual features.
- Localized proliferative disease is found in approximately 25% of γHCD patients. This is characterized by a localization of the mutated heavy chains in extramedullary tissue, or solely in the bone marrow.
- No apparent proliferative disease is seen in 9-17% of patients with γHCD, and there is almost always an underlying autoimmune disorder.
The symptoms of DRESS syndrome usually begin several weeks after exposure to the offending drug. No gold standard exists for diagnosis, and at least two diagnostic criteria have been proposed. The RegiSCAR criteria and the Japanese consensus group criteria are detailed in the table below.
Symptoms may be severe and involve many different organs. In a retrospective Taiwanese cohort study of 60 patients, these incidences were observed.
Shwachman–Diamond syndrome (SDS) or Shwachman–Bodian–Diamond syndrome is a rare congenital disorder characterized by exocrine pancreatic insufficiency, bone marrow dysfunction, skeletal abnormalities, and short stature. After cystic fibrosis (CF), it is the second most common cause of exocrine pancreatic insufficiency in children.
DRESS syndrome is one of several terms that have been used to describe a severe idiosyncratic reaction to a drug that is characterized by a long latency of onset after exposure to the offending medication, a rash, involvement of internal organs, hematologic abnormalities, and systemic illness. Other synonymous names and acronyms include hypersensitivity syndrome (DIHS), anticonvulsant hypersensitivity syndrome, drug-induced hypersensitivity syndrome, drug-induced delayed multiorgan hypersensitivity syndrome, and drug-induced pseudolymphoma.
The IgM type of heavy chain disease, μHCD, is often misdiagnosed as chronic lymphoid leukemia (CLL) because the two diseases are often associated with each other and show similar symptoms.
It is a genetic developmental disorder with clinical diversity characterized by hypoparathyroidism, sensorineural deafness and renal disease. Patients usually present with hypocalcaemia, tetany, or afebrile convulsions at any age. Hearing loss is usually bilateral and may range from mild to profound impairment. Renal disease includes nephrotic syndrome, cystic kidney, renal dysplasia, hypoplasia or aplasia, pelvicalyceal deformity, vesicoureteral reflux, chronic kidney disease, hematuria, proteinuria and renal scarring.