Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Despite this excess bone formation, people with osteopetrosis tend to have bones that are more brittle than normal. Mild osteopetrosis may cause no symptoms, and present no problems.
However, serious forms can result in...
- Stunted growth, deformity, and increased likelihood of fractures
- Patients suffer anemia, recurrent infections, and hepatosplenomegaly due to bone expansion leading to bone marrow narrowing and extramedullary hematopoiesis
- It can also result in blindness, facial paralysis, and deafness, due to the increased pressure put on the nerves by the extra bone
- Abnormal cortical bone morphology
- Abnormal form of the vertebral bodies
- Abnormality of temperature regulation
- Abnormality of the ribs
- Abnormality of vertebral epiphysis morphology
- Bone pain
- Cranial nerve paralysis
- Craniosynostosis
- Hearing impairment
- Hypocalcemia
The differential diagnosis of osteopetrosis includes other disorders that produce osteosclerosis. They constitute a wide array of disorders with clinically and radiologically diverse manifestations. Among the differential diagnosis are hereditary ostoesclerosing dysplasias such as; neuropathic infantile osteopetrosis, infantile osteopetrosis with renal tubular acidosis, infantile osteopetrosis with immunodeficiency, infantile osteopetrosis with leukocyte adhesion deficiency syndrome (LAD-III), pyknodysostosis (osteopetrosis acro-osteolytica), osteopoikilosis (Buschke–Ollendorff syndrome), osteopathia striata with cranial sclerosis, mixed sclerosing skeletal dysplasias, progressive diaphyseal dysplasia (Camurati–Engelmann disease), SOST-related sclerosing skeletal dysplasias. Besides, the differential diagnosis includes acquired conditions that induce osteosclerosis such as osteosclerotic metastasis notably carcinomas of the prostate gland and breast, Paget's disease of bone, myelofibrosis (primary disorder or secondary to intoxication or malignancy), Erdheim-Chester disease, osteosclerosing types of osteomyelitis, sickle cell disease, hypervitaminosis D and hypoparathyroidism.
Collagen improperly formed, enough collagen is made but it is defective.
- Bones fracture easily, sometimes even before birth
- Bone deformity, often severe
- Respiratory problems possible
- Short stature, spinal curvature and sometimes barrel-shaped rib cage
- Triangular face
- Loose joints (double-jointed)
- Poor muscle tone in arms and legs
- Discolouration of the sclera (the 'whites' of the eyes are blue)
- Early loss of hearing possible
Type III is distinguished among the other classifications as being the "progressive deforming" type, wherein a neonate presents with mild symptoms at birth and develops the aforementioned symptoms throughout life. Lifespans may be normal, albeit with severe physical handicapping.
Collagen quantity is sufficient but is not of a high enough quality
- Bones fracture easily, especially before puberty
- Short stature, spinal curvature, and barrel-shaped rib cage
- Bone deformity is mild to moderate
- Early loss of hearing
Similar to Type I, Type IV can be further subclassified into types IVA and IVB characterized by absence (IVA) or presence (IVB) of dentinogenesis imperfecta.
Mild or early cases of Pagets are asymptomatic, and so most people are diagnosed with Paget's disease incidentally during medical evaluation for another problem. Approximately 35% of patients with Paget's have symptoms related to the disease when they are first diagnosed. Overall, the most common symptom is bone pain. When symptoms do occur, they may be confused with those of arthritis or other disorders, and so diagnosis may be delayed.
Paget's may first be noticed as an increasing deformity of a person's bones.
Paget's disease affecting the skull may lead to loss of hearing in one or both ears due to compression of the nerves in the inner ear. Rarely, skull involvement may lead to compression of the nerves that supply the eye, leading to vision loss.
"Maffucci syndrome" is a sporadic disease characterized by the presence of multiple enchondromas associated with multiple simple or cavernous soft tissue hemangiomas. Also lymphangiomas may be apparent.
Patients are normal at birth and the syndrome manifests during childhood and puberty. The enchondromas affect the extremities and their distribution is asymmetrical.
Hematologic manifestations related to bone marrow suppression and subsequent pancytopenia are a major source of morbidity and mortality. Additionally extramedullary hematopoiesis can result in liver and spleen dysfunction. Cranial nerve dysfunction and neurologic complications are usually associated with infantile osteopetrosis. Expansion of the skull bone leads to macrocephaly. Additionally, linear growth retardation that is not apparent at birth, delayed motor milestones and poor dentition can occur.
"Fibrous dysplasia" causes bone thinning and growths or lesions in one or more bones of the human body.
These lesions are tumor-like growths that consist of replacement of the medullary bone with fibrous tissue, causing the expansion and weakening of the areas of bone involved. Especially when involving the skull or facial bones, the lesions can cause externally visible deformities. The skull is often, but not necessarily, affected, and any other bone(s) can be involved.
Fibrochondrogenesis is a congenital disorder presenting several features and radiological findings, some which distinguish it from other osteochondrodysplasias. These include: fibroblastic dysplasia and fibrosis of chondrocytes (cells which form cartilage); and flared, widened
long bone metaphyses (the portion of bone that grows during childhood).
Other prominent features include dwarfism, shortened ribs that have a appearance, micrognathism (severely underdeveloped jaw), macrocephaly (enlarged head), thoracic hypoplasia (underdeveloped chest), enlarged stomach, platyspondyly (flattened spine), and the somewhat uncommon deformity of tongue (in which the tongue appears split, resembling that of a reptile).
Paget's disease is a frequent component of multisystem proteinopathy.
Advanced Paget's disease may lead to other medical conditions, including:
- Osteoarthritis may result from changes in bone shape that alter normal skeletal mechanics. For example, bowing of a femur affected by Paget's may distort overall leg alignment, subjecting the knee to abnormal mechanical forces and accelerating degenerative wear.
- Heart failure is a rare, reported consequence of severe Paget's disease (i.e. more than 40% skeletal involvement). The abnormal bone formation is associated with recruitment of abnormal blood vessels, forcing the cardiovascular system to work harder (pump more blood) to ensure adequate circulation.
- Kidney stones are somewhat more common in patients with Paget's disease.
- Nervous system problems may occur in Paget's disease, resulting from increased pressure on the brain, spinal cord, or nerves, and reduced blood flow to the brain and spinal cord.
- When Paget's disease affects the facial bones, the teeth may become loose. Disturbance in chewing may occur. Chronic dental problems may lead to infection of the jaw bone.
- Angioid streaks may develop, possibly as a result of calcification of collagen or other pathological deposition.
Paget's disease is "not" associated with osteoporosis. Although Paget's disease and osteoporosis can occur in the same patient, they are different disorders. Despite their marked differences, several treatments for Paget's disease are also used to treat osteoporosis.
Malignant infantile osteopetrosis, also known as infantile autosomal recessive osteopetrosis or simply infantile osteopetrosis is a rare osteosclerosing type of skeletal dysplasia that typically presents in infancy and is characterized by a unique radiographic appearance of generalized hyperostosis - excessive growth of bone.
The generalized increase in bone density has a special predilection to involve the medullary portion with relative sparing of the cortices. Obliteration of bone marrow spaces and subsequent depression of the cellular function can result in serious hematologic complications. Optic atrophy and cranial nerve damage secondary to bony expansion can result in marked morbidity. The prognosis is extremely poor in untreated cases. Plain radiography provides the key information to the diagnosis. Clinical and radiologic correlations are also fundamental to the diagnostic process, with additional gene testing being confirmatory.
Osteoporosis is due to causal factors like atrophy of disuse and gonadal deficiency. Hence osteoporosis is common in post menopausal women and in men above 50 yrs. Hypercorticism may also be causal factor, as osteoporosis may be seen as a feature of Cushing's syndrome.
PDP has a number of visible symptoms. Most important clinical features are: pachydermia (thickening and wrinkling of the skin), furrowing of the face and scalp, periostosis (swelling of periarticular tissue and shaggy periosteal new bone formation of long bones) and digital clubbing (enlargement of fingertips). Other features include excessive sweating, arthralgia and gastrointestinal abnormalities. An overview of all symptoms is provided in table 2.
Table 2. Overview of symptoms
The cause of platyspondyly in fibrochondrogenesis can be attributed in part to odd malformations and structural flaws found in the vertebral bodies of the spinal column in affected infants.
Fibrochondrogenesis alters the normal function of chondrocytes, fibroblasts, metaphyseal cells and others associated with cartilage, bone and connective tissues. Overwhelming
disorganization of cellular processes involved in the formation of cartilage and bone (ossification), in combination with fibroblastic degeneration of these cells, developmental errors and systemic skeletal malformations describes the severity of this lethal osteochondrodysplasia.
The appearance of people with the disorder is caused by a loss of bone in the mandible which the body replaces with excessive amounts of fibrous tissue. In most cases, the condition fades as the child grows, but in a few even rarer cases the condition continues to deform the affected person's face. Cherubism also causes premature loss of the primary teeth and uneruption of the permanent teeth.
The condition Cherubism is a rare autosomal dominant disease of the maxilla and mandible. Approximately 200 cases have been reported by medical journals with the majority being males. Cherubism is usually first diagnosed around age 7 and continues through puberty and may or may not continue to advance with age. The degrees of Cherubism vary from mild to severe. Osteoclastic and osteoblastic remodeling contributes to the change of normal bone to fibrous tissue and cyst formation. As noted by the name, the patient's face becomes enlarged and disproportionate due to the fibrous tissue and atypical bone formation. The sponge-like bone formations lead to early tooth loss and permanent tooth eruption problems. The condition also affects the orbital area, creating an upturned eye appearance. The cause of cherubism is believed to be traced to a genetic defect resulting from a mutation of the SH3BP2 gene from chromosome 4p16.3. While the condition is rare and painless, the afflicted suffer the emotional trauma of disfigurement. The effects of Cherubism may also interfere with normal jaw motion and speech. Currently, removal of the tissue and bone by surgery is the only treatment available. This condition is also one of the few that unexpectedly stops and regresses. Normal bone remodeling activity may resume after puberty.
Cherubism is displayed with genetic conformation and when excessive osteoclasts are found in the affected areas of the mandible and maxilla. Large cysts will be present with excessive fibrous areas inside the bone. The fibers and cysts will be found among the trabecula of the Coronoid process, the ramus of mandible, the body of mandible and the maxilla regions. The maxilla will be affected up to and including the orbits and sometimes inside the lower orbits. The maxilla and zygomatic bones are depressed and eyes appear to gaze upward. The maxilla has been found to be more severely affected in most cases than the mandible bone. Some patients found with lower inner orbital growths and cysts may lose vision.
Metabolic bone disease is an umbrella term referring to abnormalities of bones caused by a broad spectrum of disorders.
Most commonly these disorders are caused by abnormalities of minerals such as calcium, phosphorus, magnesium or vitamin D leading to dramatic clinical disorders that are commonly reversible once the underlying defect has been treated. These disorders are to be differentiated from a larger group of genetic bone disorders where there is a defect in a specific signaling system or cell type that causes the bone disorder. There may be overlap. For example, genetic or hereditary hypophosphatemia may cause the metabolic bone disorder osteomalacia. Although there is currently no treatment for the genetic condition, replacement of phosphate often corrects or improves the metabolic bone disorder.
It is characterized by the growth of cartilage-capped benign bone tumours around areas of active bone growth, particularly the metaphysis of the long bones. Typically five or six exostoses are found in upper and lower limbs. Most common locations are:
- Distal femur (70%)
- Proximal tibia (70%)
- Humerus (50%)
- Proximal fibula (30%)
HME can lead to the shortening and bowing of bones; affected individuals often have a short stature. Depending on their location the exostoses can cause the following problems: pain or numbness from nerve compression, vascular compromise, inequality of limb length, irritation of tendon and muscle, Madelung's deformity as well as a limited range of motion at the joints upon which they encroach. A person with HME has an increased risk of developing a rare form of bone cancer called chondrosarcoma as an adult. Problems may be had in later life and these could include weak bones and nerve damage. The reported rate of transformation ranges from as low as 0.57% to as high as 8.3% of people with HME.
HME can cause pain to people of all ages. To children, this can be especially painful. During exercise, it can cause a significant amount of pain. Exostoses may be visible to naked eye from outside. Multiple deformities, as mentioned above, can be present. The Exotoses appear to slow their rate of growth when they reach a certain, variable mass.
Adult hypophosphatasia can be associated with rickets, premature loss of deciduous teeth, or early loss of adult dentation followed by relatively good health. Osteomalacia results in painful feet due to poor healing of metatarsal stress fractures. Discomfort in the thighs or hips due to femoral pseudofractures can be distinguished from other types of osteomalacia by their location in the lateral cortices of the femora.
Some patients suffer from calcium pyrophosphate dihydrate crystal depositions with occasional attacks of arthritis (pseudogout), which appears to be the result of elevated endogenous inorganic pyrophosphate (PPi) levels. These patients may also suffer articular cartilage degeneration and pyrophosphate arthropathy. Radiographs reveal pseudofractures in the lateral cortices of the proximal femora and stress fractures, and patients may experience osteopenia, chondrocalcinosis, features of pyrophosphate arthropathy, and calcific periarthritis.
Odontohypophosphatasia is present when dental disease is the only clinical abnormality, and radiographic and/or histologic studies reveal no evidence of rickets or osteomalacia. Although hereditary leukocyte abnormalities and other disorders usually account for this condition, odontohypophosphatasia may explain some “early-onset periodontitis” cases.
This disorder is rare, and is characterised by an asymmetrical limb deformity due to localized overgrowth of cartilage, histologically resembling osteochondroma. It is believed to affect the limb bud in early fetal life. The condition occurs mostly in the ankle or knee region and it is always confined to a single limb. This usually involves only the lower extremities and on medial side of the epiphysis. It is named after researcher David Trevor.
Hypophosphatasia in childhood has variable clinical expression. As a result of defects in the development of the dental cementum, the deciduous teeth (baby teeth) are often lost fore the age of 5. Frequently, the incisors are lost first; occasionally all of the teeth are lost prematurely. Dental radiographs can show the enlarged pulp chambers and root canals that are characteristic of rickets.
Patients may experience delayed walking, a characteristic waddling gait, stiffness and pain, and muscle weakness (especially in the thighs) consistent with nonprogressive myopathy. Typically, radiographs show defects in calcification and characteristic bony defects near the ends of major long bones. Growth retardation, frequent fractures, and low bone density (osteopenia) are common. In severely-affected infants and young children, cranial bones can fuse prematurely, despite the appearance of open fontanels on radiographic studies. The illusion of open fontanels results from hypomineralization of large areas of the calvarium. Premature bony fusion of the cranial sutures may elevate intracranial pressure.
Cherubism is a rare genetic disorder that causes prominence in the lower portion in the face. The name is derived from the temporary chubby-cheeked resemblance to putti, often confused with cherubs, in Renaissance paintings.
Trevor disease, also known as Fairbank's disease and Trevor's disease, is a congenital bone developmental disorder. There is 1 case per million population. The condition is three times more common in males than in females.
Pachydermoperiostosis (PDP) or primary hypertrophic osteoarthropathy (PHO) is a rare genetic disorder that affects both bones and skin. Other names are idiopathic hypertrophic osteoarthropathy or Touraine-Solente-Golé syndrome. It is mainly characterized by pachydermia (thickening of the skin), periostosis (excessive bone formation) and finger clubbing (swelling of tissue with loss of normal angle between nail and nail bed).
This disease affects relatively more men than women. After onset, the disease stabilizes after about 5–20 years. Life of PDP patients can be severely impaired. Currently, symptomatic treatments are NSAIDs and steroids or surgical procedures.
In 1868, PDP was first described by Friedreich as ‘excessive growth of bone of the entire skeleton’. Touraine, Solente and Golé described PDP as the primary form of bone disease hypertrophic osteoarthropathy in 1935 and distinguished its three known forms.
In addition to HHS-specific sequelae, HHS patients frequently present with the mucocutaneous triad of nail dysplasia, lacy skin pigmentation, and oral leukoplakia