Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms of Leydig cell hypoplasia include pseudohermaphroditism (i.e., feminized, ambiguous, or relatively mildly underdeveloped (e.g., micropenis, severe hypospadias, and/or cryptorchidism (undescended testes)) external genitalia), a female gender identity or gender variance, hypergonadotropic hypogonadism (hypogonadism despite high levels of gonadotropins), delayed, impaired, or fully absent puberty with an associated reduction in or complete lack of development of secondary sexual characteristics (sexual infantilism), impaired fertility or complete sterility, tall stature (due to delayed epiphyseal closure), eunuchoid skeletal proportions, delayed or absent bone maturation, and osteoporosis.
Examples of symptoms of hypogonadism include delayed, reduced, or absent puberty, low libido, and infertility.
Mutations that result in some residual 21-hydroxylase activity cause milder disease, traditionally termed simple virilizing CAH (SVCAH). In these children the mineralocorticoid deficiency is less significant and salt-wasting does not occur. However, genital ambiguities are possible.
Individuals with mild (or minimal) androgen insensitivity syndrome (grade 1 on the Quigley scale) are born phenotypically male, with fully masculinized genitalia; this category of androgen insensitivity is diagnosed when the degree of androgen insensitivity in an individual with a 46,XY karyotype is great enough to impair virilization or spermatogenesis, but is not great enough to impair normal male genital development. MAIS is the mildest and least known form of androgen insensitivity syndrome.
The existence of a variant of androgen insensitivity that solely affected spermatogenesis was theoretical at first. Cases of phenotypically normal males with isolated spermatogenic defect due to AR mutation were first detected as the result of male infertility evaluations. Until then, early evidence in support of the existence of MAIS was limited to cases involving a mild defect in virilization, although some of these early cases made allowances for some degree of impairment of genital masculinization, such as hypospadias or micropenis. It is estimated that 2-3% of infertile men have AR gene mutations.
Examples of MAIS phenotypes include isolated infertility (oligospermia or azoospermia), mild gynecomastia in young adulthood, decreased secondary terminal hair, high pitched voice, or minor hypospadias repair in childhood. The external male genitalia (penis, scrotum, and urethra) are otherwise normal in individuals with MAIS. Internal genitalia, including Wolffian structures (the epididymides, vasa deferentia, and seminal vesicles) and the prostate, is also normal, although the bitesticular volume of infertile men (both with and without MAIS) is diminished; male infertility is associated with reduced bitesticular volume, varicocele, retractile testes, low ejaculate volume, male accessory gland infections (MAGI), and mumps orchitis. The incidence of these features in infertile men with MAIS is similar to that of infertile men without MAIS. MAIS is not associated with Müllerian remnants.
Hypergonadotropic hypogonadism (HH), also known as primary or peripheral/gonadal hypogonadism, is a condition which is characterized by hypogonadism due to an impaired response of the gonads to the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and in turn a lack of sex steroid production and elevated gonadotropin levels (as an attempt of compensation by the body). HH may present as either "congenital" or "acquired", but the majority of cases are of the former nature.
The symptoms of isolated 17,20-lyase deficiency, in males, include pseudohermaphroditism (i.e., feminized, ambiguous, or mildly underdeveloped (e.g., micropenis, perineal hypospadias, and/or cryptorchidism (undescended testes)) external genitalia), female gender identity, and, in non-complete cases of deficiency where partial virilization occurs, gynecomastia up to Tanner stage V (due to low androgen levels, which results in a lack of suppression of estrogen); in females, amenorrhoea or, in cases of only partial deficiency, merely irregular menses, and enlarged cystic ovaries (due to excessive stimulation by high levels of gonadotropins); and in both sexes, hypergonadotropic hypogonadism (hypogonadism despite high levels of gonadotropins), delayed, impaired, or fully absent adrenarche and puberty with an associated reduction in or complete lack of development of secondary sexual characteristics (sexual infantilism), impaired fertility or complete sterility, tall stature (due to delayed epiphyseal closure), eunuchoid skeletal proportions, delayed or absent bone maturation, and osteoporosis.
Hyperandrogenism affects 5-10% of females of reproductive age. Hyperandrogenism can affect both males and females, but is more noticeable in females due to the fact that elevated levels of androgens in females often facilitates virilization. Due to the fact that hyperandrogenism is characterized by the elevation of male sex hormone levels, symptoms of hyperandrogenism in men are often negligible. Hyperandrogenism in females is typically diagnosed in late adolescence with a medical evaluation. The medical evaluation tends to consist of a pelvic exam, observation of external symptoms, and a blood test measuring androgen levels.
Leydig cell hypoplasia (or aplasia) (LCH), also known as Leydig cell agenesis, is a rare autosomal recessive genetic and endocrine syndrome affecting an estimated 1 in 1,000,000 genetic males. It is characterized by an inability of the body to respond to luteinizing hormone (LH), a gonadotropin which is normally responsible for signaling Leydig cells of the testicles to produce testosterone and other androgen sex hormones. The condition manifests itself as pseudohermaphroditism (partially or fully underdeveloped genitalia), hypergonadotropic hypogonadism (decreased or lack of production of sex steroids by the gonads despite high circulating levels of gonadotropins), reduced or absent puberty (lack of development of secondary sexual characteristics, resulting in sexual infantilism if left untreated), and infertility.
Leydig cell hypoplasia does not occur in biological females as they do not have either Leydig cells or testicles. However, the cause of the condition in males, luteinizing hormone insensitivity, does affect females, and because LH plays a role in the female reproductive system, it can result in primary amenorrhea or oligomenorrhea (absent or reduced menstruation), infertility due to anovulation, and ovarian cysts.
A related condition is follicle-stimulating hormone (FSH) insensitivity, which presents with similar symptoms to those of Leydig cell hypoplasia but with the symptoms in the respective sexes reversed (i.e., hypogonadism and sexual infantilism in females and merely problems with fertility in males). Despite their similar causes, FSH insensitivity is considerably less common in comparison to LH insensitivity.
The symptoms of CAH vary depending upon the form of CAH and the sex of the patient. Symptoms can include:
Due to inadequate mineralocorticoids:
- vomiting due to salt-wasting leading to dehydration and death
Due to excess androgens:
- functional and average sized penis in cases involving extreme virilization (but no sperm)
- ambiguous genitalia, in some females, such that it can be initially difficult to identify external genitalia as "male" or "female".
- early pubic hair and rapid growth in childhood
- precocious puberty or failure of puberty to occur (sexual infantilism: absent or delayed puberty)
- excessive facial hair, virilization, and/or menstrual irregularity in adolescence
- infertility due to anovulation
- clitoromegaly, enlarged clitoris and shallow vagina
Due to insufficient androgens and estrogens:
- Undervirilization in XY males, which can result in apparently female external genitalia
- In females, hypogonadism can cause sexual infantilism or abnormal pubertal development, infertility, and other reproductive system abnormalities
Hyperandrogenism, especially high levels of testosterone, can cause serious adverse effects on women’s bodies if left untreated. High testosterone levels have been seen to be associated with obesity, hypertension, amenorrhea(stop of menstrual cycles), and ovulatory dysfunction, which can lead to infertility. The more prominent signs of hyperandrogenism are hirsutism (unwanted growth of hair especially in the abdominal region and places on the back), acne after adolescence, deepening of voice, and alopecia(balding). Hyperandrogenism has also been seen to cause individuals to have a high tolerance to insulin, which can lead to type two diabetes, and dyslipidemia, such as high cholesterol. These effects have also been seen to have a large psychological impact on the individual, sometimes often leading to societal anxiety and depression, especially in adolescent girls and young women. Paired with obesity and hirsutism, it can cause the individual to have low self-esteem, and a poor view of oneself.
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a severe neurodegenerative syndrome that is associated with a particular mutation of the androgen receptor's polyglutamine tract called a trinucleotide repeat expansion. SBMA results when the length of the polyglutamine tract exceeds 40 repetitions.
Although technically a variant of MAIS, SBMA's presentation is not typical of androgen insensitivity; symptoms do not occur until adulthood and include neuromuscular defects as well as signs of androgen inaction. Neuromuscular symptoms include progressive proximal muscle weakness, atrophy, and fasciculations. Symptoms of androgen insensitivity experienced by men with SBMA are also progressive and include testicular atrophy, severe oligospermia or azoospermia, gynecomastia, and feminized skin changes despite elevated androgen levels. Disease onset, which usually affects the proximal musculature first, occurs in the third to fifth decades of life, and is often preceded by muscular cramps on exertion, tremor of the hands, and elevated muscle creatine kinase. SBMA is often misdiagnosed as amyotrophic lateral sclerosis (ALS) (also known as Lou Gehrig's disease).
The symptoms of SBMA are thought to be brought about by two simultaneous pathways involving the toxic misfolding of proteins and loss of AR functionality. The polyglutamine tract in affected pedigrees tends to increase in length over generations, a phenomenon known as "anticipation", leading to an increase in the severity of the disease as well as a decrease in the age of onset for each subsequent generation of a family affected by SBMA.
The androgen excess is mild enough that virilization is not apparent or goes unrecognized at birth and in early childhood. However, androgen levels are above normal and slowly rise during childhood, producing noticeable effects between 2 and 9 years of age.
Appearance of pubic hair in mid-childhood is the most common feature that leads to evaluation and diagnosis. Other accompanying features are likely to be tall stature and accelerated bone age (often 3–5 years ahead). Often present are increased muscle mass, acne, and adult body odor. In boys the penis will be enlarged. Mild clitoral enlargement may occur in girls, and sometimes a degree of prenatal virilization is recognized that may have gone unnoticed in infancy.
The principal goals of treatment of non-classical CAH are to preserve as much growth as possible and to prevent central precocious puberty if it has not already been triggered. These are more difficult challenges than in CAH detected in infancy because moderate levels of androgens will have had several years to advance bone maturation and to trigger central puberty before the disease is detected.
A diagnosis of non-classical CAH is usually confirmed by discovering extreme elevations of 17α-hydroxyprogesterone along with moderately high testosterone levels. A cosyntropin stimulation test may be needed in mild cases, but usually the random levels of 17OHP are high enough to confirm the diagnosis.
The mainstay of treatment is suppression of adrenal testosterone production by a glucocorticoid such as hydrocortisone. Mineralocorticoid is only added in cases where the plasma renin activity is high.
A third key aspect of management is suppression of central precocious puberty if it has begun. The usual clues to central puberty in boys are that the testes are pubertal in size, or that testosterone remains elevated even when the 17OHP has been reduced toward normal. In girls central puberty is less often a problem, but breast development would be the main clue. Central precocious puberty is suppressed when appropriate by leuprolide.
As outlined above, recent additions to treatment to preserve growth include aromatase inhibition to slow bone maturation by reducing the amount of testosterone converted to estradiol, and use of blockers of estrogen for the same purpose.
Once adrenal suppression has been achieved, the patient needs stress steroid coverage as described above for significant illness or injury.
Other alleles result in even milder degrees of hyperandrogenism that may not even cause problems in males and may not be recognized until adolescence or later in females. Mild androgen effects in young women may include hirsutism, acne, or anovulation (which in turn can cause infertility). Testosterone levels in these women may be mildly elevated, or simply above average. These clinical features, of course, are those of polycystic ovary syndrome, and a small percentage of women with Polycystic Ovary Syndrome (PCOS) are found to have late-onset CAH when investigated.
Diagnosis of late-onset CAH may be suspected from a high 17α-hydroxyprogesterone level, but some cases are so mild that the elevation is only demonstrable after cosyntropin stimulation. Treatment may involve a combination of very low dose glucocorticoid to reduce adrenal androgen production and any of various agents to block the androgen effects and/or induce ovulation.
It was characterized in 1979 by Dr. Maria New. Prevalence has been described as 1 in 100 in certain populations.
Individuals with complete androgen insensitivity syndrome (grades 6 and 7 on the Quigley scale) are born phenotypically female, without any signs of genital masculinization, despite having a 46,XY karyotype. Symptoms of CAIS do not appear until puberty, which may be slightly delayed, but is otherwise normal except for absent menses and diminished or absent secondary terminal hair. Axillary hair (i.e. armpit hair) fails to develop in one third of all cases. External genitalia is normal, although the labia and clitoris are sometimes underdeveloped. The vaginal depth varies widely, but is typically shorter than unaffected women; one study of eight women with CAIS measured the average vaginal depth to be 5.9 cm (vs. 11.1 ± 1.0 cm for unaffected women ). In some extreme cases, the vagina has been reported to be aplastic (resembling a "dimple"), though the exact incidence of this is unknown.
The gonads in these women are not ovaries, but instead, are testes; during the embryonic stage of development, testes form in an androgen-independent process that occurs due to the influence of the SRY gene on the Y chromosome. They may be located intra-abdominally, at the internal inguinal ring, or may herniate into the labia majora, often leading to the discovery of the condition. Testes in affected women have been found to be atrophic upon gonadectomy. Testosterone produced by the testes cannot be directly used due to the mutant androgen receptor that characterizes CAIS; instead, it is aromatized into estrogen, which effectively feminizes the body and accounts for the normal female phenotype observed in CAIS.
Immature sperm cells in the testes do not mature past an early stage, as sensitivity to androgens is required in order for spermatogenesis to complete. Germ cell malignancy risk, once thought to be relatively high, is now thought to be approximately 2%. Wolffian structures (the epididymides, vasa deferentia, and seminal vesicles) are typically absent, but will develop at least partially in approximately 30% of cases, depending on which mutation is causing the CAIS. The prostate, like the external male genitalia, cannot masculinize in the absence of androgen receptor function, and thus remains in the female form.
The Müllerian system (the fallopian tubes, uterus, and upper portion of the vagina) typically regresses due to the presence of anti-Müllerian hormone originating from the Sertoli cells of the testes. These women are thus born without fallopian tubes, a cervix, or a uterus, and the vagina ends "blindly" in a pouch. Müllerian regression does not fully complete in approximately one third of all cases, resulting in Müllerian "remnants". Although rare, a few cases of women with CAIS and fully developed Müllerian structures have been reported. In one exceptional case, a 22-year-old with CAIS was found to have a normal cervix, uterus, and fallopian tubes. In an unrelated case, a fully developed uterus was found in a 22-year-old adult with CAIS.
Other subtle differences that have been reported include slightly longer limbs and larger hands and feet due to a proportionally greater stature than unaffected women, larger teeth, minimal or no acne, well developed breasts, and a greater incidence of meibomian gland dysfunction (i.e. dry eye syndromes and light sensitivity).
Isolated 17,20-lyase deficiency (ILD), also called isolated 17,20-desmolase deficiency, is a rare endocrine and autosomal recessive genetic disorder which is characterized by a complete or partial loss of 17,20-lyase activity and, in turn, impaired production of the androgen and estrogen sex steroids. The condition manifests itself as pseudohermaphroditism (partially or fully underdeveloped genitalia) in males, in whom it is considered to be a form of intersex, and, in both sexes, as a reduced or absent puberty/lack of development of secondary sexual characteristics, resulting in a somewhat childlike appearance in adulthood (if left untreated).
Unlike the case of combined 17α-hydroxylase/17,20-lyase deficiency, isolated 17,20-lyase deficiency does not affect glucocorticoid production (or mineralocorticoid levels), and for that reason, does not result in adrenal hyperplasia or hypertension.
All forms of androgen insensitivity, including CAIS, are associated with infertility, though exceptions have been reported for both the mild and partial forms.
CAIS is associated with a decreased bone mineral density. Some have hypothesized that the decreased bone mineral density observed in women with CAIS is related to the timing of gonadectomy and inadequate estrogen supplementation. However, recent studies show that bone mineral density is similar whether gonadectomy occurs before or after puberty, and is decreased despite estrogen supplementation, leading some to hypothesize that the deficiency is directly attributable to the role of androgens in bone mineralization.
CAIS is also associated with an increased risk for gonadal tumors (e.g. germ cell malignancy) in adulthood if gonadectomy is not performed. The risk of malignant germ cell tumors in women with CAIS increases with age and has been estimated to be 3.6% at 25 years and 33% at 50 years. The incidence of gonadal tumors in childhood is thought to be relatively low; a recent review of the medical literature found that only three cases of malignant germ cell tumors in prepubescent girls have been reported in association with CAIS in the last 100 years. Some have estimated the incidence of germ cell malignancy to be as low as 0.8% before puberty.
Vaginal hypoplasia, a relatively frequent finding in CAIS and some forms of PAIS, is associated with sexual difficulties including vaginal penetration difficulties and dyspareunia.
At least one study indicates that individuals with an intersex condition may be more prone to psychological difficulties, due at least in part to parental attitudes and behaviors, and concludes that preventative long-term psychological counseling for parents as well as for affected individuals should be initiated at the time of diagnosis.
Lifespan is not thought to be affected by AIS.
The sex steroid consequences of severe 3β-HSD CAH are unique among the congenital adrenal hyperplasias: it is the only form of CAH that can produce ambiguity in both sexes. As with 21-hydroxylase deficient CAH, the degree of severity can determine the magnitude of over- or undervirilization.
In an XX (genetically female) fetus, elevated amounts of DHEA can produce moderate virilization by conversion in the liver to testosterone. Virilization of genetic females is partial, often mild, and rarely raises assignment questions. The issues surrounding corrective surgery of the virilized female genitalia are the same as for moderate 21-hydroxylase deficiency but surgery is rarely considered desirable.
The extent to which mild 3β-HSD CAH can cause early appearance of pubic hair and other aspects of hyperandrogenism in later childhood or adolescence is unsettled. Early reports about 20 years ago suggesting that mild forms of 3β-HSD CAH comprised significant proportions of girls with premature pubic hair or older women with hirsutism have not been confirmed and it now appears that premature pubarche in childhood and hirsutism after adolescence are not common manifestations of 3β-HSD CAH.
Undervirilization of genetic males with 3β-HSD CAH occurs because synthesis of testosterone is impaired in both adrenals and testes. Although DHEA is elevated, it is a weak androgen and too little testosterone is produced in the liver to offset the deficiency of testicular testosterone. The degree of undervirilization is more variable, from mild to severe. Management issues are those of an undervirilized male with normal sensitivity to testosterone.
If the infant boy is only mildly undervirilized, the hypospadias can be surgically repaired, testes brought into the scrotum, and testosterone supplied at puberty.
Management decisions are more difficult for a moderately or severely undervirilized genetic male whose testes are in the abdomen and whose genitalia look at least as much female as male. Male sex can assigned and major reconstructive surgery done to close the midline of the perineum and move the testes into a constructed scrotum. Female sex can be assigned and the testes removed and vagina enlarged surgically. A recently advocated third choice would be to assign either sex and defer surgery to adolescence. Each approach carries its own disadvantages and risks. Children and their families are different enough that none of the courses is appropriate for all.
The mineralocorticoid aspect of severe 3β-HSD CAH is similar to those of 21-hydroxylase deficiency. Like other enzymes involved in early stages of both aldosterone and cortisol synthesis, the severe form of 3β-HSD deficiency can result in life-threatening salt-wasting in early infancy. Salt-wasting is managed acutely with saline and high-dose hydrocortisone, and long-term fludrocortisone.
Congenital adrenal hyperplasia (CAH) are any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the biochemical steps of production of mineralocorticoids, glucocorticoids or sex steroids from cholesterol by the adrenal glands (steroidogenesis).
Most of these conditions involve excessive or deficient production of sex steroids and can alter development of primary or secondary sex characteristics in some affected infants, children, or adults.
The condition may be due to:
- Turner syndrome, and its variations (i.e. mosaicism)
- XX gonadal dysgenesis, also pure gonadal dysgenesis, 46,XX
- Swyer syndrome, also pure gonadal dysgenesis, 46,XY
- Perrault syndrome, XX gonadal dysgenesis + sensorineural hearing loss
- Mixed gonadal dysgenesis
- Exposure to environmental endocrine disruptors
Swyer syndrome represents one phenotypic result of a failure of the gonads to develop properly, and hence is part of a class of conditions termed gonadal dysgenesis. There are many forms of gonadal dysgenesis.
Swyer syndrome is an example of a condition in which an externally unambiguous female body carries dysgenetic, atypical, or abnormal gonads. Other examples include complete androgen insensitivity syndrome, partial X chromosome deletions, lipoid congenital adrenal hyperplasia, and Turner syndrome.
Gonadal dysgenesis is any congenital developmental disorder of the reproductive system characterized by a progressive loss of germ cells on the developing gonads of an embryo. This loss leads to extremely hypoplastic (underdeveloped) and dysfunctioning gonads mainly composed of fibrous tissue, hence the name streak gonads—i.e., a form of aplasia in which the ovary is replaced by functionless tissue. The accompanying hormonal failure also prevents the development of secondary sex characteristics in either sex, resulting in a sexually infantile female appearance and infertility.
The first type of gonadal dysgenesis discovered was Turner syndrome.
Swyer syndrome, or XY gonadal dysgenesis, is a type of hypogonadism in a person whose karyotype is 46,XY. The person is externally female with streak gonads, and if left untreated, will not experience puberty. Such gonads are typically surgically removed (as they have a significant risk of developing tumors) and a typical medical treatment would include hormone replacement therapy.
The syndrome was named by Gerald Swyer, an endocrinologist, based in London, United Kingdom.
Estrogen insensitivity syndrome (EIS), or estrogen resistance, is a form of congenital estrogen deficiency or hypoestrogenism which is caused by a defective estrogen receptor (ER) – specifically, the estrogen receptor alpha (ERα) – that results in an inability of estrogen to mediate its biological effects in the body. Congenital estrogen deficiency can alternatively be caused by a defect in aromatase, the enzyme responsible for the biosynthesis of estrogens, a condition which is referred to as aromatase deficiency and is similar in symptomatology to EIS.
EIS is an extremely rare occurrence. As of 2016, there have been three published reports of EIS, involving a total of five individuals. The reports include a male case published in 1994, a female case published in 2013, and a familial case involving two sisters and a brother which was published in 2016.
EIS is analogous to androgen insensitivity syndrome (AIS), a condition in which the androgen receptor (AR) is defective and insensitive to androgens, such as testosterone and dihydrotestosterone (DHT). The functional opposite of EIS is hyperestrogenism, for instance that seen in aromatase excess syndrome.
17-β-Hydroxysteroid dehydrogenase III deficiency is clinically characterized by either ambiguous external genitalia or complete female external genitalia at birth; as a consequence of impaired male sexual differentiation in 46,XY individuals, as well as:
- Hypothyroidism
- Cryptorchidism
- Infertility
- Abnormality of metabolism
Milder cases of lipoid CAH have been described that arise from less severe mutations that compromise but do not eliminate the ability of StAR to instigate steroid production. In these cases, mineralocorticoid deficiency emerges up to several years after birth. Sex steroid production may be sufficient to allow for normal sexual development as well and even fertility.
These nonclassic forms of the disorder are sometimes diagnosed as familial glucocorticoid deficiency type 3.