Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The types of CMS are classified into three categories: presynaptic, postsynaptic, and synaptic.
- "Presynaptic" symptoms include brief stops in breathing, weakness of the eye, mouth, and throat muscles. These symptoms often result in double vision and difficulty chewing and swallowing.
- "Postsynaptic" symptoms in infants include severe muscle weakness, feeding and respiratory problems, and delays in the ability to sit, crawl, and walk.
- "Synaptic" symptoms include early childhood feeding and respiratory problems, reduced mobility, curvature of the spine, and weakness, which causes a delay in motor milestones.
Onset symptoms for all ages may include droopy eyelids. A particular form of postsynaptic CMS (slow-channel CMS) includes severe weakness beginning in infancy or childhood that progresses and leads to loss of mobility and respiratory problems in adolescence or later life.
Symptoms of ML III are often not noticed until the child is 3–5 years of age. Patients with ML III are generally of normal intelligence (trait) or have only mild mental retardation. These patients usually have skeletal abnormalities, coarse facial features, short height, corneal clouding, carpal tunnel syndrome, aortic valve disease and mild enlargement of organs. Some children with severe forms of this disease do not live beyond childhood. However, there is a great variability among patients - there are diagnosed individuals with ML III living in their sixties.
Neuromuscular disease is a very broad term that encompasses many diseases and ailments that impair the functioning of the muscles, either directly, being pathologies of the voluntary muscle, or indirectly, being pathologies of nerves or neuromuscular junctions.
Neuromuscular diseases are those that affect the muscles and/or their direct nervous system control, problems with central nervous control can cause either spasticity or some degree of paralysis (from both lower and upper motor neuron disorders), depending on the location and the nature of the problem. Some examples of central disorders include cerebrovascular accident, Parkinson's disease, multiple sclerosis, Huntington's disease and Creutzfeldt–Jakob disease. Spinal muscular atrophies are disorders of lower motor neuron while amyotrophic lateral sclerosis is a mixed upper and lower motor neuron condition.
Hereditary inclusion body myopathies (HIBM) are a heterogeneous group of very rare genetic disorders which have different symptoms. Generally, they are neuromuscular disorders characterized by muscle weakness developing in young adults. Hereditary inclusion body myopathies comprise both autosomal recessive and autosomal dominant muscle disorders that have a variable expression (phenotype) in individuals, but all share similar structural features in the muscles.
HIBMs are a group of muscle wasting disorders, which are uncommon in the general world population. One autosomal recessive form of HIBM is known as IBM2 or GNE myopathy, which is a common genetic disorder amongst people of Iranian Jewish descent. IBM2 has also been identified in other minorities throughout the world, including people of Asian (Japanese and others), European, and South American origin, as well as Muslim people in the Middle Eastern, Palestinian, and Iranian origin. In Japan and many East Asian countries, this disorder is known as Distal Myopathy with Rimmed Vacuoles (DMRV).
IBM2 causes progressive muscle weakness and wasting. Muscle wasting usually starts around the age of 20 – 30 years, although young onset at 17 and old onset at 52 has been recorded. As such, it affects the most productive times of our lives. It can progress to marked disability within 10 – 15 years, confining many people with IBM2 to a wheelchair. The weakness and severity can vary from person to person. In some, weakness in the legs is noticed first. In few others, the hands are weakened more rapidly than the legs. Weakness is progressive, which means the muscle becomes weaker over time. IBM2 does not seem to affect the brain, internal organs or sensation. The quadriceps are relatively spared, and remain strong until the late stages of disease, which is the reason IBM2 is often referred to as Quadriceps Sparing Myopathy (QSM).
Some early signs of HIBMs includes:
- Difficulty walking on heels, and difficulty running;
- Weak index finger;
- Frequent loss of balance.
- On muscle biopsy, the typical finding includes inclusion bodies, rimmed vacuoles and accumulation of aberrant proteins similar to those found in senile plaques of Alzheimer's disease (amyloid beta, hyperphosphorylated tau, amongst others)
Neuromuscular disease can be caused by autoimmune disorders, genetic/hereditary disorders and some forms of the collagen disorder Ehlers–Danlos Syndrome, exposure to environmental chemicals and poisoning which includes heavy metal poisoning. The failure of the electrical insulation surrounding nerves, the myelin, is seen in certain deficiency diseases, such as the failure of the body's system for absorbing vitamin B-12
Diseases of the motor end plate include myasthenia gravis, a form of muscle weakness due to antibodies against acetylcholine receptor, and its related condition Lambert-Eaton myasthenic syndrome (LEMS). Tetanus and botulism are bacterial infections in which bacterial toxins cause increased or decreased muscle tone, respectively.Muscular dystrophies, including Duchenne's and Becker's, are a large group of diseases, many of them hereditary or resulting from genetic mutations, where the muscle integrity is disrupted, they lead to progressive loss of strength and decreased life span.
Further causes of neuromuscular diseases are :
Inflammatory muscle disorders
- Polymyalgia rheumatica (or "muscle rheumatism") is an inflammatory condition that mainly occurs in the elderly; it is associated with giant-cell arteritis(It often responds to prednisolone).
- Polymyositis is an autoimmune condition in which the muscle is affected.
- Rhabdomyolysis is the breakdown of muscular tissue due to any cause.
Tumors
- Smooth muscle: leiomyoma (benign)
- Striated muscle: rhabdomyoma (benign)
Presentation of symptoms and signs varies considerably by form (DM1/DM2), severity and even unusual DM2 phenotypes. DM1 symptoms for DM2 include problems with executive function (e.g., organization, concentration, word-finding) and hypersomnia. Conduction abnormalities are more common in DM1 than DM2, but all people are advised to have an annual ECG. Both types are also associated with insulin resistance. Myotonic dystrophy may have a cortical cataract with a blue dot appearance, or a posterior subcapsular cataract.
DM2 is generally milder than DM1, with generally fewer DM2 people requiring assistive devices than DM1 people. In addition, the severe congenital form that affects babies in DM1 has not been found in DM2 and the early onset of symptoms is rarely noted to appear in younger people in the medical literature.
Symptoms may appear at any time from infancy to adulthood. DM causes general weakness, usually beginning in the muscles of the hands, feet, neck, or face. It slowly progresses to involve other muscle groups, including the heart. DM affects a wide variety of other organ systems as well.
Congenital myasthenic syndrome (CMS) is an inherited neuromuscular disorder caused by defects of several types at the neuromuscular junction. The effects of the disease are similar to Lambert-Eaton Syndrome and myasthenia gravis, the difference being that CMS is not an autoimmune disorder.
Individuals with SBMA have muscle cramps and progressive weakness due to degeneration of motor neurons in the brain stem and spinal cord. Ages of onset and severity of manifestations in affected males vary from adolescence to old age, but most commonly develop in middle adult life. The syndrome has neuromuscular and endocrine manifestations.
Myotonic dystrophy is a long term genetic disorder that affects muscle function. Symptoms include gradually worsening muscle loss and weakness. Muscles often contract and are unable to relax. Other symptoms may include cataracts, intellectual disability, and heart conduction problems. In men there may be early balding and an inability to have children.
Myotonic dystrophy is an autosomal-dominant disorder which is typically inherited from a person's parents. There are two main types: type 1 (DM1) due to mutations in the DMPK gene and type 2 (DM2) due to mutations in the CNBP gene. The disorder generally worsens in each generation. A type of DM1 may be apparent at birth. DM2 is generally milder. They are types of muscular dystrophy. Diagnosis is confirmed by genetic testing.
There is no cure. Treatments may include braces or wheelchairs, pacemakers, and non invasive positive pressure ventilation. The medications mexiletine or carbamazepine are occasionally helpful. Pain if it occurs may be treated with tricyclic antidepressants and nonsteroidal anti inflammatory drugs (NSAIDs).
Myotonic dystrophy affects more than 1 in 8,000 people worldwide. While myotonic dystrophy can occur at any age, onset is typically in the 20s and 30s. It is the most common form of muscular dystrophy that begins in adulthood. It was first described in 1909 with the underlying cause of type 1 determined in 1992.
Early signs often include weakness of tongue and mouth muscles, fasciculations, and gradually increasing weakness of limb muscles with muscle wasting. Neuromuscular management is supportive, and the disease progresses very slowly, but can eventually lead to extreme disability. Further signs and symptoms include:
Pseudo-Hurler polydystrophy, also referred to as mucolipidosis III (ML III), is a lysosomal storage disease closely related to I-cell disease (ML II). This disorder is called Pseudo-Hurler because it resembles a mild form of Hurler syndrome, one of the mucopolysaccharide (MPS) diseases.
There are two ways to classify neuromuscular diseases. The first relies on its mechanism of action, or how the action of the diseases affects normal functioning (whether it is through mutations in genes or more direct pathways such as poisoning). This category divides neuromuscular diseases into three broad categories: immune-mediated disease, toxic/metabolic and congenital syndromes.
The second classification method divides the diseases according to the location of their disruption. In the neuromuscular junction, the diseases will either act on the presynaptic membrane of the motor neuron, the synapse separating the motor neuron from the muscle fiber, or the postsynaptic membrane (the muscle fiber).
Immune-mediated diseases include a variety of diseases not only affecting the neuromuscular junction. Immune-mediated disorders range from simple and common problems such as allergies to disorders such as HIV/AIDS. Within this classification, autoimmune disorders are considered to be a subset of immune-mediated syndromes. Autoimmune diseases occur when the body's immune system begins to target its own cells, often causing harmful effects.
The neuromuscular junction diseases present within this subset are myasthenia gravis, and Lambert-Eaton syndrome.(reference 26) In each of these diseases, a receptor or other protein essential to normal function of the junction is targeted by antibodies in an autoimmune attack by the body.
Symptoms include poor growth, loss of muscle coordination, muscle weakness, visual problems, hearing problems, learning disabilities, heart disease, liver disease, kidney disease, gastrointestinal disorders, respiratory disorders, neurological problems, autonomic dysfunction and dementia. Acquired conditions in which mitochondrial dysfunction has been involved are: diabetes, Huntington's disease, cancer, Alzheimer's disease, Parkinson's disease, bipolar disorder, schizophrenia, aging and senescence, anxiety disorders, cardiovascular disease, sarcopenia, chronic fatigue syndrome.
The body, and each mutation, is modulated by other genome variants; the mutation that in one individual may cause liver disease might in another person cause a brain disorder. The severity of the specific defect may also be great or small. Some minor defects cause only "exercise intolerance", with no serious illness or disability. Defects often affect the operation of the mitochondria and multiple tissues more severely, leading to multi-system diseases.
As a rule, mitochondrial diseases are worse when the defective mitochondria are present in the muscles, cerebrum, or nerves, because these cells use more energy than most other cells in the body.
Although mitochondrial diseases vary greatly in presentation from person to person, several major clinical categories of these conditions have been defined, based on the most common phenotypic features, symptoms, and signs associated with the particular mutations that tend to cause them.
An outstanding question and area of research is whether ATP depletion or reactive oxygen species are in fact responsible for the observed phenotypic consequences.
Cerebellar atrophy or hypoplasia has sometimes been reported to be associated.
The natural history of MWS is not well known: many patients died in infancy and clinical follow-up has been reported in few surviving adults. However, diagnosis may be more difficult to establish in adults patients, such as: blepharophimosis, contractures, growth retardation, and developmental delay, whereas minor face anomalies are less noticeable as the patient grows older. Throughout the development of the patient from young child to older adult changes the behavior drastically, from kindness to restless and hyperactive to aggressive.
Mitochondrial diseases are a group of disorders caused by dysfunctional mitochondria, the organelles that generate energy for the cell. Mitochondria are found in every cell of the human body except red blood cells, and convert the energy of food molecules into the ATP that powers most cell functions.
Mitochondrial diseases are sometimes (about 15% of the time) caused by mutations in the mitochondrial DNA that affect mitochondrial function. Other mitochondrial diseases are caused by mutations in genes of the nuclear DNA, whose gene products are imported into the mitochondria (mitochondrial proteins) as well as acquired mitochondrial conditions. Mitochondrial diseases take on unique characteristics both because of the way the diseases are often inherited and because mitochondria are so critical to cell function. The subclass of these diseases that have neuromuscular disease symptoms are often called a mitochondrial myopathy.
Most of the signs of MWS are present during the neonatal period. The most common signs at this state are multiple congenital joint contractures, dysmorphic features with mask-like face, blepharophimosis, ptosis, micrognathia, cleft or high arched palate, low-set ears, arachnodactyly, chest deformation as pectus, kyphoscoliosis and absent deep tendon reflexes are frequent minor malformations have also been described and consist of renal anomalies, cardiovascular abnormalities, hypospadias, omphalomesenteric duct, hypertriphic pyloric stenosis, duodenal bands, hyoplastic right lower lobe of the lung, displacement of the larynx to the right and vertebral abnormalities, cerebral malformations.
- 75% of children with MWS have blepharophimosis, small mouth, micrognathia, kyphosis/scoliosis, radio ulnar synostose and multiple contractures.
- They have severe developmental delay; congenital joint contractures and blepharophimosis should be present in every patient
- 2 out of 3 of the following signs should be manifested: post natal growth, mask-like faces, retardation, and decreased muscular mass.
- Some may require additional signs such as; micrognathia, high arched or cleft palate, low set ears, kyphoscoliosis.
- The symptoms of MWS are normally diagnosed during the newborn period
Onset of PLS usually occurs spontaneously after age 50 and progresses gradually over a number of years, or even decades. The disorder usually begins in the legs, but it may start in the tongue or the hands. Symptoms may include difficulty with balance, weakness and stiffness in the legs, and clumsiness. Other common symptoms are spasticity (involuntary muscle contraction due to the stretching of muscle, which depends on the velocity of the stretch) in the hands, feet, or legs, foot dragging, and speech and swallowing problems due to involvement of the facial muscles. Breathing may also become compromised in the later stages of the disease, causing those patients who develop ventilatory failure to require noninvasive ventilatory support. Hyperreflexia is another key feature of PLS as seen in patients presenting with the Babinski's sign. Some people present with emotional lability and bladder urgency, and occasionally people with PLS experience mild cognitive changes detectable on neuropsychological testing, particularly on measures of executive function.
PLS is not considered hereditary when onset is in adulthood; however, juvenile primary lateral sclerosis (JPLS) has been linked to a mutation in the ALS2 gene which encodes the cell-signalling protein alsin.
The issue of whether PLS exists as a different entity from ALS is not clear, as some patients initially diagnosed as having PLS ultimately develop lower motor neuron signs.
There are no specific tests for the diagnosis of PLS. Therefore, the diagnosis occurs as the result of eliminating other possible causes of the symptoms and by an extended observation period.
NMT is a diverse disorder. As a result of muscular hyperactivity, patients may present with muscle cramps, stiffness, myotonia-like symptoms (slow relaxation), associated walking difficulties, hyperhidrosis (excessive sweating), myokymia (quivering of a muscle), fasciculations (muscle twitching), fatigue, exercise intolerance, myoclonic jerks and other related symptoms. The symptoms (especially the stiffness and fasciculations) are most prominent in the calves, legs, trunk, and sometimes the face and neck, but can also affect other body parts. NMT symptoms may fluctuate in severity and frequency. Symptoms range from mere inconvenience to debilitating. At least a third of people also experience sensory symptoms.
Weakness of the muscles involved in speaking may lead to dysarthria and hypophonia. Speech may be slow and slurred, or have a nasal quality. In some cases, a singing hobby or profession must be abandoned.
The initial, main symptom in MG is painless weakness of specific muscles, not fatigue. The muscle weakness becomes progressively worse during periods of physical activity and improves after periods of rest. Typically, the weakness and fatigue are worse toward the end of the day. MG generally starts with ocular (eye) weakness; it might then progress to a more severe generalized form, characterized by weakness in the extremities or in muscles that govern basic life functions.
Primary lateral sclerosis (PLS) usually presents with gradual-onset, progressive, lower-extremity stiffness and pain due to muscle spasticity. Onset is often asymmetrical. Although the muscles do not appear to atrophy as in ALS (at least initially), the disabling aspect of PLS is muscle spasticity and cramping, and intense pain when those muscles are stretched, resulting in joint immobility. A normal walking stride may become a tiny step shuffle with related instability and falling.
Laminopathies and other nuclear envelopathies have a large variety of clinical symptoms including skeletal and/or cardiac muscular dystrophy, lipodystrophy and diabetes, dysplasia, dermo- or neuropathy, leukodystrophy, and progeria (premature aging). Most of these symptoms develop after birth, typically during childhood or adolescence. Some laminopathies however may lead to an early death, and mutations of lamin B (LMNB1 gene) may be lethal before or at birth.
The specific problems produced differ according to the particular abnormal synthesis involved. Common manifestations include ataxia; seizures; retinopathy; liver fibrosis; coagulopathies; failure to thrive; dysmorphic features ("e.g.," inverted nipples and subcutaneous fat pads; and strabismus. If an MRI is obtained, cerebellar atrophy and hypoplasia is a common finding.
Ocular abnormalities of CDG-Ia include: myopia, infantile esotropia, delayed visual maturation, low vision, optic disc pallor, and reduced rod function on electroretinography.
Three subtypes of CDG I (a,b,d) can cause congenital hyperinsulinism with hyperinsulinemic hypoglycemia in infancy.