Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms of pulmonary hypertension include the following:
Less common signs/symptoms include non-productive cough and exercise-induced nausea and vomiting. Coughing up of blood may occur in some patients, particularly those with specific subtypes of pulmonary hypertension such as heritable pulmonary arterial hypertension, Eisenmenger syndrome and chronic thromboembolic pulmonary hypertension. Pulmonary venous hypertension typically presents with shortness of breath while lying flat or sleeping (orthopnea or paroxysmal nocturnal dyspnea), while pulmonary arterial hypertension (PAH) typically does not.
Other typical signs of pulmonary hypertension include an accentuated pulmonary component of the second heart sound, a right ventricular third heart sound, and parasternal heave indicating a hypertrophied right atrium. Signs of systemic congestion resulting from right-sided heart failure include jugular venous distension, ascites, and hepatojugular reflux. Evidence of tricuspid insufficiency and pulmonic regurgitation is also sought and, if present, is consistent with the presence of pulmonary hypertension.
Clinical symptoms and signs are often non-specific or absent in early CTEPH, with signs of right heart failure only in advanced disease. The main symptom of CTEPH is exertional breathlessness (shortness of breath during exertion such as exercise), which is unspecific and may often be attributed to other, more common, diseases by physicians. When present, the clinical symptoms of CTEPH may resemble those of acute PE, or of idiopathic pulmonary arterial hypertension (iPAH). Leg oedema (swelling) and haemoptysis (blood in mucus) occur more often in CTEPH, while syncope (fainting) is more common in iPAH.
Anomalous pulmonary venous connection (or anomalous pulmonary venous drainage or anomalous pulmonary venous return) is a congenital defect of the pulmonary veins.
"Total anomalous pulmonary venous connection", also known as "total anomalous pulmonary venous drainage" and "total anomalous pulmonary venous return", is a rare cyanotic congenital heart defect in which all four pulmonary veins are malpositioned and make anomalous connections to the systemic venous circulation. (Normally, pulmonary veins return oxygenated blood from the lungs to the left atrium where it can then be pumped to the rest of the body). A patent foramen ovale, patent ductui arteriosa or an atrial septal defect "must" be present, or else the condition is fatal due to a lack of systemic blood flow.
In some cases, it can be detected prenatally.
There are four variants: Supracardiac (50%): blood drains to one of the innominate veins (brachiocephalic veins) or the superior vena cava; Cardiac (20%), where blood drains into coronary sinus or directly into right atrium; Infradiaphragmatic (20%), where blood drains into portal or hepatic veins; and a mixed (10%) variant.
TAPVC can occur with "obstruction", which occurs when the anomalous vein enters a vessel at an acute angle and can cause pulmonary venous hypertension and cyanosis because blood cannot enter the new vein as easily.
The symptoms/signs of pulmonary heart disease (cor pulmonale) can be non-specific and depend on the stage of the disorder, and can include blood backing up into the systemic venous system, including the hepatic vein. As pulmonary heart disease progresses, most individuals will develop symptoms like:
The anomalous venous return forms a curved shadow on chest x-ray such that it resembles a scimitar. This is called the Scimitar Sign. Associated abnormalities include right lung hypoplasia with associated dextroposition of the heart, pulmonary artery hypoplasia and pulmonary sequestration.Incidence is around 1 per 100,000 births.
According to WHO classification there are 5 groups of PH, where Group I (pulmonary arterial hypertension) is further subdivided into Group I' and Group I" classes. The most recent WHO classification system (with adaptations from the more recent ESC/ERS guidelines shown in italics) can be summarized as follows:
WHO Group I – Pulmonary arterial hypertension (PAH)
- Idiopathic
- Heritable (BMPR2, ALK1, SMAD9, caveolin 1, KCNK3 mutations)
- Drug- and toxin-induced (e.g., methamphetamine use)
- Associated conditions:Connective tissue disease, HIV infection, Portal hypertension, Congenital heart diseases, Schistosomiasis
WHO Group I' – Pulmonary veno-occlusive disease (PVOD), pulmonary capillary hemangiomatosis (PCH)
- Idiopathic
- Heritable (EIF2AK4 mutations)
- Drugs, toxins and radiation-induced
- Associated conditions:connective tissue disease, HIV infection
WHO Group I" – Persistent pulmonary hypertension of the newborn
WHO Group II – Pulmonary hypertension secondary to left heart disease
- Left ventricular Systolic dysfunction
- Left ventricular Diastolic dysfunction
- Valvular heart disease
- Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathy
- Congenital/acquired pulmonary venous stenosis
WHO Group III – Pulmonary hypertension due to lung disease, chronic hypoxia
- Chronic obstructive pulmonary disease (COPD)
- Interstitial lung disease
- Mixed restrictive and obstructive pattern pulmonary diseases
- Sleep-disordered breathing
- Alveolar hypoventilation disorders
- Chronic exposure to high altitude
- Developmental abnormalities
WHO Group IV – chronic arterial obstruction
- Chronic thromboembolic pulmonary hypertension (CTEPH)
- Other pulmonary artery obstructions
- Angiosarcoma or other tumor within the blood vessels
- Arteritis
- Congenital pulmonary artery stenosis
- Parasitic infection (hydatidosis)
WHO Group V – Pulmonary hypertension with unclear or multifactorial mechanisms
- Hematologic diseases: chronic hemolytic anemia (including sickle cell disease)
- Systemic diseases: sarcoidosis, pulmonary Langerhans cell histiocytosis: lymphangioleiomyomatosis, neurofibromatosis, vasculitis
- Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid diseases
- Others: pulmonary tumoral thrombotic microangiopathy, fibrosing mediastinitis, chronic kidney failure, segmental pulmonary hypertension (pulmonary hypertension restricted to one or more lobes of the lungs)
Scimitar syndrome, or congenital pulmonary venolobar syndrome, is a rare congenital heart defect characterized by anomalous venous return from the right lung (to the systemic venous drainage, rather than directly to the left atrium). This anomalous pulmonary venous return can be either partial (PAPVR) or total (TAPVR). The syndrome associated with PAPVR is more commonly known as "Scimitar syndrome" after the curvilinear pattern created on a chest radiograph by the pulmonary veins that drain to the inferior vena cava. This radiographic density often has the shape of a scimitar, a type of curved sword. The syndrome was first described by Catherine Neill in 1960.
Chronic thromboembolic pulmonary hypertension (CTEPH) is a long-term disease caused by a blockage in the blood vessels that deliver blood from the heart to the lungs (pulmonary arteries), resulting in increased pressure in these arteries (pulmonary hypertension). The blockage either results from a hardened blood clot that is thought to originate from the deep veins of the body (thromboembolism) and remains in the arteries, or from a scar that forms at the site where the clot has damaged the arteries, causing permanent fibrous obstruction (blood flow blockage). Most patients have a combination of microvascular (small vessel) and macrovascular (large vessel) obstruction. Some patients may present with normal or near-normal pulmonary pressures at rest despite symptomatic disease. These patients are labelled as having chronic thromboembolic disease (CTED).
Diagnosis is based on findings obtained after at least 3 months of effective anticoagulation therapy (blood thinners) in order to discriminate this condition from ‘subacute’ pulmonary embolism (blood clot in the lungs, PE). Diagnostic findings for CTEPH are:
1. Invasively (i.e., in the blood) measured mean pulmonary arterial pressure (mPAP) ≥25 mmHg;
2. Mismatched perfusion defects on lung ventilation/perfusion (V/Q) scan and specific diagnostic signs for CTEPH seen by multidetector computed tomography angiography (MDCT), magnetic resonance imaging (MRI) or conventional pulmonary cineangiography (PAG), such as ring-like stenoses, webs/slits, chronic total occlusions (pouch lesions, or tapered lesions) and tortuous lesions.
Because pulmonic regurgitation is the result of other factors in the body, any noticeable symptoms are ultimately caused by an underlying medical condition rather than the regurgitation itself. However, more severe regurgitation may contribute to right ventricular enlargement by dilation, and in later stages, right heart failure. A diastolic decrescendo murmur can sometimes be identified,( heard best) over the left lower sternal border.
d vessels can present a large variety of , and/or . The effects may range from a change in blood pressure to an interruption in circulation, depending on the nature and degree of the misplacement and which vessels are involved.
Although "transposed" literally means "swapped", many types of TGV involve vessels that are in abnormal positions, while not actually being swapped with each other. The terms TGV and TGA are most commonly used in reference to dextro-TGA – in which the arteries "are" in swapped positions; however, both terms are also commonly used, though to a slightly lesser extent, in reference to levo-TGA – in which both the arteries and the ventricles are swapped; while other defects in this category are almost never referred to by either of these terms.
Pulmonary insufficiency (or incompetence, or regurgitation) is a condition in which the pulmonary valve is incompetent and allows backflow from the pulmonary artery to the right ventricle of the heart during diastole. While a small amount of backflow may occur ordinarily, it is usually only shown on an echocardiogram and is harmless. More pronounced regurgitation that is noticed through a routine physical examination is a medical sign of disease and warrants further investigation. If it is secondary to pulmonary hypertension it is referred to as a Graham Steell murmur.
Pulmonary artery sling is a rare condition in which the left pulmonary artery anomalously originates from a normally positioned right pulmonary artery. The left pulmonary artery arises anterior to the right main bronchus near its origin from the trachea, courses between the trachea and the esophagus and enters the left hilum. Symptoms include cyanosis, dyspnoea and apnoeic spells. It almost always requires surgical intervention. Rarely it is asymptomatic and is detected incidentally in asymptomatic adults.
Pulmonic stenosis, also known as pulmonary stenosis, is a dynamic or fixed obstruction of flow from the right ventricle of the heart to the pulmonary artery. It is usually first diagnosed in childhood.
Pulmonic stenosis is usually due to isolated valvular obstruction (pulmonary valve stenosis), but it may be due to subvalvular or supravalvular obstruction, such as infundibular stenosis. It may occur in association with other congenital heart defects as part of more complicated syndromes (for example, tetralogy of Fallot).
Pulmonary heart disease, also known as cor pulmonale is the enlargement and failure of the right ventricle of the heart as a response to increased vascular resistance (such as from pulmonic stenosis) or high blood pressure in the lungs.
Chronic pulmonary heart disease usually results in right ventricular hypertrophy (RVH), whereas acute pulmonary heart disease usually results in dilatation. Hypertrophy is an adaptive response to a long-term increase in pressure. Individual muscle cells grow larger (in thickness) and change to drive the increased contractile force required to move the blood against greater resistance. Dilatation is a stretching (in length) of the ventricle in response to acute increased pressure.
To be classified as pulmonary heart disease, the cause must originate in the pulmonary circulation system. Two causes are vascular changes as a result of tissue damage (e.g. disease, hypoxic injury), and chronic hypoxic pulmonary vasoconstriction. If left untreated, then death may result, RVH due to a defect is not classified as pulmonary heart disease. The heart and lungs are intricately related; whenever the heart is affected by a disease, the lungs risk following and vice versa.
Among some of the symptoms consistent with pulmonary valve stenosis are the following:
- Heart murmur
- Cyanosis
- Dyspnea
- Dizziness
- Upper thorax pain
- Developmental disorders
In dextro-Transposition of the great arteries (dextro-TGA) deoxygenated blood from the right heart is pumped immediately through the aorta and circulated to the body and the heart itself, bypassing the lungs altogether, while the left heart pumps oxygenated blood continuously back into the lungs through the pulmonary artery. In effect, two separate "circular" (parallel) circulatory systems are created. It is called a cyanotic congenital heart defect (CHD) because the newborn infant turns blue from lack of oxygen.
Symptoms of pulmonary embolism are typically sudden in onset and may include one or many of the following: dyspnea (shortness of breath), tachypnea (rapid breathing), chest pain of a "pleuritic" nature (worsened by breathing), cough and hemoptysis (coughing up blood). More severe cases can include signs such as cyanosis (blue discoloration, usually of the lips and fingers), collapse, and circulatory instability because of decreased blood flow through the lungs and into the left side of the heart. About 15% of all cases of sudden death are attributable to PE.
On physical examination, the lungs are usually normal. Occasionally, a pleural friction rub may be audible over the affected area of the lung (mostly in PE with infarct). A pleural effusion is sometimes present that is exudative, detectable by decreased percussion note, audible breath sounds, and vocal resonance. Strain on the right ventricle may be detected as a left parasternal heave, a loud pulmonary component of the second heart sound, and/or raised jugular venous pressure. A low-grade fever may be present, particularly if there is associated pulmonary hemorrhage or infarction.
As smaller pulmonary emboli tend to lodge in more peripheral areas without collateral circulation they are more likely to cause lung infarction and small effusions (both of which are painful), but not hypoxia, dyspnea or hemodynamic instability such as tachycardia. Larger PEs, which tend to lodge centrally, typically cause dyspnea, hypoxia, low blood pressure, fast heart rate and fainting, but are often painless because there is no lung infarction due to collateral circulation. The classic presentation for PE with pleuritic pain, dyspnea and tachycardia is likely caused by a large fragmented embolism causing both large and small PEs. Thus, small PEs are often missed because they cause pleuritic pain alone without any other findings and large PEs often missed because they are painless and mimic other conditions often causing ECG changes and small rises in troponin and BNP levels.
PEs are sometimes described as massive, submassive and nonmassive depending on the clinical signs and symptoms. Although the exact definitions of these are unclear, an accepted definition of massive PE is one in which there is hemodynamic instability such as sustained low blood pressure, slowed heart rate, or pulselessness.
When pulmonic stenosis (PS) is present, resistance to blood flow causes right ventricular hypertrophy. If right ventricular failure develops, right atrial pressure will increase, and this may result in a persistent opening of the foramen ovale, shunting of unoxygenated blood from the right atrium into the left atrium, and systemic cyanosis. If pulmonary stenosis is severe, congestive heart failure occurs, and systemic venous engorgement will be noted. An associated defect such as a patent ductus arteriosus partially compensates for the obstruction by shunting blood from the left ventricle to the aorta then back to the pulmonary artery (as a result of the higher pressure in the left ventricle) and back into the lungs.
Common symptoms include:
- tachycardia (a heart rate exceeding the normal resting rate)
- respiratory problems
- dyspnea (shortness of breath)
- continuous "machine-like" (also described as "rolling-thunder" and "to-and-fro") heart murmur (usually from aorta to pulmonary artery, with higher flow during systole and lower flow during diastole)
- cardiomegaly (enlarged heart, reflecting ventricular dilation and volume overload)
- left subclavicular thrill
- bounding pulse
- widened pulse pressure
- increased cardiac output
- increased systolic pressure
- poor growth
- differential cyanosis, i.e. cyanosis of the lower extremities but not of the upper body.
Patients typically present in good health, with normal respirations and heart rate. If the PDA is moderate or large, widened pulse pressure and bounding peripheral pulses are frequently present, reflecting increased left ventricular stroke volume and diastolic run-off of blood into the (initially lower-resistance) pulmonary vascular bed. Prominent suprasternal and carotid pulsations may be noted secondary to increased left ventricular stroke volume.
Pulmonary atresia is a congenital malformation of the pulmonary valve in which the valve orifice fails to develop. The valve is completely closed thereby obstructing the outflow of blood from the heart to the lungs. The pulmonary valve is located on the right side of the heart between the right ventricle and pulmonary artery. In a normal functioning heart, the opening to the pulmonary valve has three flaps that open and close
In congenital heart defects such as pulmonary atresia, one finds that these structural abnormalities can include the valves of the heart, as well as, the walls and arteries/veins near the heart muscle. Consequently, blood flow due to the aforementioned structural abnormalities, is affected, either by blocking or altering the flow of blood through the human cardiac muscle.
In regards to the cause of pulmonary valve stenosis a very high percentage are congenital, the right ventricular flow is hindered (or obstructed by this). The cause in turn is divided into: valvular, external and intrinsic (when it is acquired).
Stenosis of the pulmonary artery is a condition where the pulmonary artery is subject to an abnormal constriction (or stenosis). Peripheral pulmonary artery stenosis may occur as an isolated event or in association with Alagille syndrome, Berardinelli-Seip congenital lipodystrophy type 1, Costello syndrome, Keutel syndrome, nasodigitoacoustic syndrome (Keipert syndrome), Noonan syndrome or Williams syndrome.
It should not be confused with a pulmonary valve stenosis, which is in the heart, but can have similar hemodynamic effects. Both stenosis of the pulmonary artery and pulmonary valve stenosis are causes of pulmonic stenosis.
In some cases it is treated with surgery.
Bilharzial cor pulmonale is the condition of right sided heart failure secondary to fibrosis and sclerosis of the pulmonary artery branches. It results from shifting of the "Schistosoma haematobium" ova from the pelvic and vescial plexus to the pulmonary artery branches where they settle and produce granuloma and fibrosis.
Bilharzial cor pulmonale occurs in "Schistosoma mansoni", when the portal pressure rises more than the systemic pressure. So blood will pass from the portal circulation to the systemic circulation carrying "Schistosoma mansoni" ova to reach the lungs.
This condition leads to Pulmonary hypertension, right ventricular hypertrophy and failure.
The symptoms/signs of pulmonary atresia that will occur in babies are consistent with cyanosis, some fatigue and some shortness of breath (eating may be a problem as well).
In the case of pulmonary atresia with ventricular septal defect, one finds that decreased pulmonary blood flow may cause associated defects such as:
- Tricuspid atresia
- Tetralogy of Fallot (severe)
- RV w/ double-outlet