Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Patients may present with features of hypocalcaemia including carpo-pedal muscular spasms, cramping, tetany, and if the calcium deficit is severe, generalized seizures. IQ is typically mildly depressed or unaffected. Additional characteristics include short stature, obesity, developmental delay, and calcification of the basal ganglia in the deep white matter of the brain.
Type 1a Pseudohypoparathyroidism is clinically manifest by bone resorption with blunting of the fourth and fifth knuckles of the hand, most notable when the dorsum of the hand is viewed in closed fist position. This presentation is known as 'knuckle knuckle dimple dimple' sign (Archibald's Sign). This is as opposed to Turner syndrome which is characterized by blunting of only the fourth knuckle, and Down's syndrome, which is associated with a hypoplastic middle phalanx.
The term pseudopseudohypoparathyroidism is used to describe a condition where the individual has the phenotypic appearance of pseudohypoparathyroidism type 1a, but is biochemically normal.
Pseudopseudohypoparathyroidism can be best understood by comparing it to other conditions:
Hormone resistance is not present in pseudopseudohypoparathyroidism. Short stature may be present. Obesity is less common in pseudopseudohypoparathyroidism than in pseudohypoparathyroidism. Osteoma cutis may be present.
The main symptoms of hypoparathyroidism are the result of the low blood calcium level, which interferes with normal muscle contraction and nerve conduction. As a result, people with hypoparathyroidism can experience paresthesia, an unpleasant tingling sensation around the mouth and in the hands and feet, as well as muscle cramps and severe spasms known as "tetany" that affect the hands and feet. Many also report a number of subjective symptoms such as fatigue, headaches, bone pain and insomnia. Crampy abdominal pain may occur. Physical examination of someone with hypocalcemia may show tetany, but it is also possible to provoke tetany of the facial muscles by tapping on the facial nerve (a phenomenon known as Chvostek's sign) or by using the cuff of a sphygmomanometer to temporarily obstruct the blood flow to the arm (a phenomenon known as Trousseau's sign of latent tetany).
A number of medical emergencies can arise in people with low calcium levels. These are seizures, severe irregularities in the normal heart beat, as well as spasm of the upper part of the airways or the smaller airways known as the bronchi (both potentially causing respiratory failure).
Pseudopseudohypoparathyroidism (PPHP) is an inherited disorder, named for its similarity to pseudohypoparathyroidism in presentation. It is more properly Albright hereditary osteodystrophy although without resistance of parathyroid hormone frequently seen in that affliction. The term pseudopseudohypoparathyroidism is used to describe a condition where the individual has the phenotypic appearance of pseudohypoparathyroidism type 1a, but has (unexpected for the phenotype) normal labs including Calcium and PTH.
It can be considered a variant of Albright hereditary osteodystrophy, or pseudohypoparathyroidism type 1A, as they present with the same constellation of signs and symptoms, including short stature, brachydactyly, subcutaneous calcification, and obesity.
The disorder is characterized by the following:
Individuals with Albright hereditary osteodystrophy exhibit short stature, characteristically shortened fourth and fifth metacarpals, rounded facies, and often mild intellectual deficiency. Albright hereditary osteodystrophy is commonly known as pseudohypoparathyroidism because the kidney responds as if parathyroid hormone were absent. Blood levels of parathyroid hormone are elevated in pseudohypoparathyroidism due to the hypocalcemia
Hypoparathyroidism can have the following causes:
- Removal of, or trauma to, the parathyroid glands due to thyroid surgery (thyroidectomy), parathyroid surgery (parathyroidectomy) or other surgical interventions in the central part of the neck (such as operations on the larynx and/or pharynx) is a recognized cause. It is the most common cause of hypoparathyroidism. Although surgeons generally make attempts to spare normal parathyroid glands at surgery, inadvertent injury to the glands or their blood supply is still common. When this happens, the parathyroids may cease functioning. This is usually temporary but occasionally long term (permanent).
- Kenny-Caffey Syndrome
- Autoimmune invasion and destruction is the most common non-surgical cause. It can occur as part of autoimmune polyendocrine syndromes.
- Hemochromatosis can lead to iron accumulation and consequent dysfunction of a number of endocrine organs, including the parathyroids.
- Absence or dysfunction of the parathyroid glands is one of the components of chromosome 22q11 microdeletion syndrome (other names: DiGeorge syndrome, Schprintzen syndrome, velocardiofacial syndrome).
- Magnesium deficiency
- A defect in the calcium receptor leads to a rare congenital form of the disease
- Idiopathic (of unknown cause), occasionally familial (e.g. Barakat syndrome (HDR syndrome) a genetic development disorder resulting in hypoparathyroidism, sensorineural deafness and renal disease)
Hypercalcemia is suspected to occur in approximately 1 in 500 adults in the general adult population. Like hypocalcemia, hypercalcemia can be non-severe and present with no symptoms, or it may be severe, with life-threatening symptoms. Hypercalcemia is most commonly caused by hyperparathyroidism and by malignancy, and less commonly by vitamin D intoxication, familial hypocalciuric hypercalcemia and by sarcoidosis. Hyperparathyroidism occurs most commonly in postmenopausal women. Hyperparathyroidism can be caused by a tumor, or adenoma, in the parathyroid gland or by increased levels of parathyroid hormone due to hypocalcemia. Approximately 10% of cancer sufferers experience hypercalcemia due to malignancy. Hypercalcemia occurs most commonly in breast cancer, lymphoma, prostate cancer, thyroid cancer, lung cancer, myeloma, and colon cancer. It may be caused by secretion of parathyroid hormone-related peptide by the tumor (which has the same action as parathyroid hormone), or may be a result of direct invasion of the bone, causing calcium release.
Symptoms of hypercalcemia include anorexia, nausea, vomiting, constipation, abdominal pain, lethargy, depression, confusion, polyuria, polydipsia and generalized aches and pains.
Albright's hereditary osteodystrophy is a form of osteodystrophy, and is classified as the phenotype of pseudohypoparathyroidism type 1A; this is a condition in which the body does not respond to parathyroid hormone.
Hypocalcemia is common and can occur unnoticed with no symptoms or, in severe cases, can have dramatic symptoms and be life-threatening. Hypocalcemia can be parathyroid related or vitamin D related. Parathyroid related hypocalcemia includes post-surgical hypoparathyroidism, inherited hypoparathyroidism, pseudohypoparathyroidism, and pseudo-pseudohypoparathyroidism. Post-surgical hypoparathyroidism is the most common form, and can be temporary (due to suppression of tissue after removal of a malfunctioning gland) or permanent, if all parathyroid tissue has been removed. Inherited hypoparathyroidism is rare and is due to a mutation in the calcium sensing receptor. Pseudohypoparathyroidism is maternally inherited and is categorized by hypocalcemia and hyperphosphatemia. Finally, pseudo-pseudohypoparathyroidism is paternally inherited. Patients display normal parathyroid hormone action in the kidney, but exhibit altered parathyroid hormone action in the bone.
Vitamin D related hypocalcemia may be associated with a lack of vitamin D in the diet, a lack of sufficient UV exposure, or disturbances in renal function. Low vitamin D in the body can lead to a lack of calcium absorption and secondary hyperparathyroidism (hypocalcemia and raised parathyroid hormone). Symptoms of hypocalcemia include numbness in fingers and toes, muscle cramps, irritability, impaired mental capacity and muscle twitching.
There are a multitude of different etiologies of HH. Congenital causes include the following:
- Chromosomal abnormalities (resulting in gonadal dysgenesis) - Turner's syndrome, Klinefelter's syndrome, Swyer's syndrome, XX gonadal dysgenesis, and mosaicism.
- Defects in the enzymes involved in the gonadal biosynthesis of the sex hormones - 17α-hydroxylase deficiency, 17,20-lyase deficiency, 17β-hydroxysteroid dehydrogenase III deficiency, and lipoid congenital adrenal hyperplasia.
- Gonadotropin resistance (e.g., due to inactivating mutations in the gonadotropin receptors) - Leydig cell hypoplasia (or insensitivity to LH) in males, FSH insensitivity in females, and LH and FSH resistance due to mutations in the "GNAS" gene (termed pseudohypoparathyroidism type 1A).
Acquired causes (due to damage to or dysfunction of the gonads) include ovarian torsion, vanishing/anorchia, orchitis, premature ovarian failure, ovarian resistance syndrome, trauma, surgery, autoimmunity, chemotherapy, radiation, infections (e.g., sexually-transmitted diseases), toxins (e.g., endocrine disruptors), and drugs (e.g., antiandrogens, opioids, alcohol).
Examples of symptoms of hypogonadism include delayed, reduced, or absent puberty, low libido, and infertility.
The Chvostek sign () is a clinical sign of existing nerve hyperexcitability (tetany) seen in hypocalcemia. It refers to an abnormal reaction to the stimulation of the facial nerve. When the facial nerve is tapped in front of tragus the facial muscles on the same side of the face will contract momentarily (typically a twitch of the nose or lips) because of hypocalcemia (i.e. from hypoparathyroidism, pseudohypoparathyroidism, hypovitaminosis D) with resultant hyperexcitability of nerves. Though classically described in hypocalcemia, this sign may also be encountered in respiratory alkalosis, such as that seen in hyperventilation, which causes decreased serum Ca with a normal calcium level due to a shift of Ca from the blood to albumin which has become more negative in the alkalotic state.
The Trousseau sign of latent tetany is also often used to detect early tetany.
Hitting a point between the middle third and upper third of the line joining the angle of the mouth to the zygomatic process gives rise to only a contraction of the muscles of the mouth and nose.
In dentistry, hypodontia is the condition at which the patient has missing teeth as a result of the failure of those teeth to develop (also called tooth agenesis). Hypodontia describes a situation where the patient is missing up to five permanent teeth, excluding the 3rd molars. Missing third molars occur in 9–30% of studied populations. In primary dentition the maxilla is more affected, with the condition usually involving the maxillary lateral incisor.
The condition of missing over five (six or more) permanent teeth, excluding 3rd molars or wisdom teeth, has been called oligodontia. The condition for missing all teeth, either primary and/or permanent), is called anodontia. A similar condition is hyperdontia, in which there are more than the usual number of teeth, more commonly called supernumerary teeth.
Many other terms to describe a reduction in number of teeth appear in the literature: aplasia of teeth, congenitally missing teeth, absence of teeth, agenesis of teeth and lack of teeth.
In persons of European ancestry, the most common missing teeth are the wisdom teeth (25–35%), the permanent upper lateral incisors (2%), the lower second premolars (3%), or the upper second premolar, with a higher prevalence in females than in males. The prevalence of missing primary teeth is found at 0.1–0.9%, with a 1:1 male to female ratio. Excluding the third molars, missing permanent dentition accounts for 3.5–6.5%. Similar trends of missing teeth can be seen in approximately 3–10% of orthodontic patients.
30-50% of people with missing primary teeth will have missing permanent teeth, as well.
Paroxysmal kinesigenic choreathetosis (PKC) also called paroxysmal kinesigenic dyskinesia (PKD) is a hyperkinetic movement disorder characterized by attacks of involuntary movements, which are triggered by sudden voluntary movements. The number of attacks can increase during puberty and decrease in a person's 20s to 30s. Involuntary movements can take many forms such as ballism, chorea or dystonia and usually only affect one side of the body or one limb in particular. This rare disorder only affects about 1 in 150,000 people with PKD accounting for 86.8% of all the types of paroxysmal dyskinesias and occurs more often in males than females. There are two types of PKD, primary and secondary. Primary PKD can be further broken down into familial and sporadic. Familial PKD, which means the individual has a family history of the disorder, is more common, but sporadic cases are also seen. Secondary PKD can be caused by many other medical conditions such as multiple sclerosis (MS), stroke, pseudohypoparathyroidism, hypocalcemia, hypoglycemia, hyperglycemia, central nervous system trauma, or peripheral nervous system trauma. PKD has also been linked with infantile convulsions and choreoathetosis (ICCA) syndrome, in which patients have afebrile seizures during infancy (benign familial infantile epilepsy) and then develop paroxysmal choreoathetosis later in life. This phenomenon is actually quite common, with about 42% of individuals with PKD reporting a history of afebrile seizures as a child.
Paroxysmal kinesigenic dyskinesia is diagnosed using a strict set of guidelines. These criteria were studied and confirmed by Bruno et al. in a study of 121 individuals with PKD. The age at onset is between 1 and 20 years old. The attacks of involuntary movements last less than one minute and have a known trigger, usually a sudden voluntary movement. For example, if a PKD patient stands up or begins walking after being sedentary for a period of time, or a person goes from a walk to a run, it can trigger an attack. Persons with PKD do not lose consciousness during attacks and have a full memory of the entire attack. Lastly, people with the disorder have a good response to medication and are usually prescribed anticonvulsants. The study also found that patients with familial PKD exhibit symptoms that follow the diagnostic criteria closely, while sporadic PKD individuals may deviate slightly. Prior to criteria for diagnosis being set out, many patients with PKD were often diagnosed with some form of epilepsy. Many patients also experience an aura, similar to those experienced with epilepsy, preceding their attacks. Some patients describe it as a tingling sensation in the affected limb or “butterflies in their stomach.” Some individuals also have precipitants, such as stress and anxiety, that make it more likely for attacks to occur.
The above diagnostic criteria also set PKD apart from the other paroxysmal dyskinesias, which include paroxysmal nonkinesigenic dyskinesia (PNKD) and paroxysmal exercise-induced dyskinesia (PED). While PKD attacks last less than one minute, PNKD attacks last a few minutes to a few hours, and as the name suggests, the attacks do not occur because of a sudden voluntary movement like PKD. Additionally, PKD can almost always be managed with drug therapy, while PNKD is not as responsive to anticonvulsants. PED, on the other hand, separates itself from PKD in that it is caused by prolonged exercise. Attacks from PED will cease soon after exercise is stopped.