Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms may differ greatly, as apparently modifiers control to some degree the amount of FX that is produced. Some affected individuals have few or no symptoms while others may experience life-threatening bleeding. Typically this bleeding disorder manifests itself as a tendency to easy bruising, nose bleeding, heavy and prolonged menstruation and bleeding during pregnancy and childbirth, and excessive bleeding after dental or surgical interventions. Newborns may bleed in the head, from the umbilicus, or excessively after circumcision. Other bleeding can be encountered in muscles or joints, brain, gut, or urine
While in congenital disease symptoms may be present at birth or show up later, in patients with acquired FX deficiency symptoms typically show up in later life.
Symptoms may differ greatly, as apparently modifiers control to some degree the amount of FVII that is produced. Some affected individuals have few or no symptoms while others may experience life-threatening bleeding. Typically this bleeding disorder manifests itself as a tendency to easy bruising, nose bleeding, heavy and prolonged menstruation, and excessive bleeding after dental or surgical interventions. Newborns may bleed in the head, from the umbilicus, or excessively after circumcision. Other bleeding can be encountered in the gut, in muscles or joints, or the brain. Hematuria may occur.
While in congenital disease symptoms may be present at birth or show up later, in patients with acquired FVII deficiency symptoms typically show up in later life.
About 3-4% of patients with FVII deficiency may also experience thrombotic episodes.
While it is indicated that people with FXII deficiency are generally asymptomatic, studies in women with recurrent miscarriages suggest an association with FXII deficiency.
The condition is of importance in the differential diagnosis to other bleeding disorders, specifically the hemophilias: hemophilia A with a deficiency in factor VIII or antihemophilic globulin, hemophilia B with a deficiency in factor IX (Christmas disease), and hemophilia C with a deficiency in factor XI. Other rare forms of bleeding disorders are also in the differential diagnosis.
There is concern that individuals with FXII deficiency are more prone to thrombophilic disease, however, this is at variance with a long term study from Switzerland.
Factor X deficiency (X as Roman numeral ten) is a bleeding disorder characterized by a lack in the production of factor X (FX), an enzyme protein that causes blood to clot in the coagulation cascade. Produced in the liver FX when activated cleaves prothrombin to generate thrombin in the intrinsic pathway of coagulation. This process is vitamin K dependent and enhanced by activated factor V.
The condition may be inherited or, more commonly, acquired.
Factor VII deficiency is a bleeding disorder characterized by a lack in the production of Factor VII (FVII) (proconvertin), a protein that causes blood to clot in the coagulation cascade. After a trauma factor VII initiates the process of coagulation in conjunction with tissue factor (TF/factor III) in the extrinsic pathway.
The condition may be inherited or acquired. It is the most common of the rare congenital coagulation disorders.
Factor XII deficiency (also Hageman factor deficiency) is a deficiency in the production of factor XII (FXII), a plasma glycoprotein and clotting factor that participates in the coagulation cascade and activates factor XI. FXII appears to be not essential for blood clotting, as individuals with this condition are usually asymptomatic and form blood clots in vivo. FXII deficiency tends to be identified during presurgical laboratory screening for bleeding disorders.
The condition can be inherited or acquired.
Type 1 vWD (60-80% of all vWD cases) is a quantitative defect which is heterozygous for the defective gene. It can arise from failure to secrete vWF into the circulation or from vWF being cleared more quickly than normal. Decreased levels of vWF are detected at 20-50% of normal, i.e. 20-50 IU.
Many patients are asymptomatic or may have mild symptoms and not have clearly impaired clotting, which might suggest a bleeding disorder. Often, the discovery of vWD occurs incidentally to other medical procedures requiring a blood work-up. Most cases of type 1 vWD are never diagnosed due to the asymptomatic or mild presentation of type I and most people usually end up leading a normal life free of complications, with many being unaware that they have the disorder.
Trouble may, however, arise in some patients in the form of bleeding following surgery (including dental procedures), noticeable easy bruising, or menorrhagia (heavy menstrual periods). The minority of cases of type 1 may present with severe hemorrhagic symptoms.
Type 2 vWD (15-30% of cases) is a qualitative defect and the bleeding tendency can vary between individuals. Four subtypes exist: 2A, 2B, 2M, and 2N. These subtypes depend on the presence and behavior of the underlying multimers.
There are various symptoms that are presented and are typically associated to a specific site that they appear at. Hypoprothrombinemia is characterized by a poor blood clotting function of prothrombin. Some symptoms are presented as severe, while others are mild, meaning that blood clotting is slower than normal. Areas that are usually affected are muscles, joints, and the brain, however, these sites are more uncommon.
The most common symptoms include:
1. Easy bruising
2. Oral mucosal bleeding - Bleeding of the membrane mucus lining inside of the mouth.
3. Soft tissue bleeding.
4. Hemarthrosis - Bleeding in joint spaces.
5. Epistaxis - Acute hemorrhages from areas of the nasal cavity, nostrils, or nasopharynx.
6. Women with this deficiency experience menorrhagia: prolonged, abnormal heavy menstrual bleeding. This is typically a symptom of the disorder when severe blood loss occurs.
Other reported symptoms that are related to the condition:
1. Prolonged periods of bleeding due to surgery, injury, or post birth.
2. Melena - Associated with acute gastrointestinal bleeding, dark black, tarry feces.
3. Hematochezia - Lower gastrointestinal bleeding, passage of fresh, bright red blood through the anus secreted in or with stools. If associated with upper gastrointestinal bleeding, suggestive of a more life-threatening issue.
Type I: Severe hemorrhages are indicators of a more severe prothrombin deficiency that account for muscle hematomas, intracranial bleeding, postoperative bleeding, and umbilical cord hemorrhage, which may also occur depending on the severity, respectively.
Type II: Symptoms are usually more capricious, but can include a variety of the symptoms described previously. Less severe cases of the disorder typically do not involve spontaneous bleeding.
The presentation of TTP is variable. The initial symptoms, which force the patient to medical care, are often the consequence of lower platelet counts like purpura (present in 90% of patients), ecchymosis and hematoma. Patients may also report signs and symptoms as a result of (microangiopathic) hemolytic anemia, such as (dark) beer-brown urine, (mild) jaundice, fatigue and pallor. Cerebral symptoms of various degree are present in many patients, including headache, paresis, speech disorder, visual problems, seizures and disturbance of consciousness up to coma. The symptoms can fluctuate so that they may only be temporarily present but may reappear again later in the TTP episode. Other unspecific symptoms are general malaise, abdominal, joint and muscle pain. Severe manifestations of heart or lung involvements are rare, although affections are not seldom measurable (such as ECG-changes).
The following symptoms (signs) are consistent with complement deficiency in general:
Vaccinations for encapsulated organisms (e.g., "Neisseria meningitidis" and "Streptococcus pneumoniae") is crucial for preventing infections in complement deficiencies. Among the possible complications are the following:
- Deficiencies of the terminal complement components increases susceptibility to infections by Neisseria.
Hypoprothrombinemia is a rare blood disorder in which a deficiency in immunoreactive prothrombin (Factor II), produced in the liver, results in an impaired blood clotting reaction, leading to an increased physiological risk for spontaneous bleeding. This condition can be observed in the gastrointestinal system, cranial vault, and superficial integumentary system, effecting both the male and female population. Prothrombin is a critical protein that is involved in the process of hemostasis, as well as illustrating procoagulant activities. This condition is characterized as an autosomal recessive inheritance congenital coagulation disorder affecting 1 per 2,000,000 of the population, worldwide, but is also attributed as acquired.
An estimated 64 percent of patients with venous thromboembolism may have activated protein C resistance.
SPS is diagnosed by demonstrating platelet hyperaggregability. In a lab test called aggregometry platelet stickyness is stimulated with epinephrine (EPI) and/or adenosine diphosphate (ADP). This test is not possible for patients being treated with acetylsalicylic acid until that substance has sufficiently cleared from their system.
Protein S deficiency is a disorder associated with increased risk of venous thrombosis. Protein S, a vitamin K-dependent physiological anticoagulant, acts as a nonenzymatic cofactor to activate protein C in the degradation of factor Va and factor VIIIa. Decreased (antigen) levels or impaired function of protein S leads to decreased degradation of factor Va and factor VIIIa and an increased propensity to venous thrombosis. Protein S circulates in human plasma in two forms: approximately 60 percent is bound to complement component C4b β-chain while the remaining 40 percent is free, only free protein S has activated protein C cofactor activity
Sticky platelet syndrome is a term used by some to describe a disorder of platelet function. It was first described by Mammen in 1983. It is inherited in an autosomal dominant pattern. It has not been associated with a specific gene, and it is not recognized as an entity in OMIM.
Among researchers using the term, it has been described as a coagulation disorder that can present in conjunction with protein S deficiency and Factor V Leiden. It is not currently known if sticky platelet syndrome is a distinct condition, or if it represents part of the presentation of a more well characterized coagulation disorder.
Activated protein C resistance (APCR) is a hemostatic disorder characterized by a poor anticoagulant response to activated protein C (APC). This results in an increased risk of venous thrombosis, which can cause problems with circulation, such as pulmonary embolism.
The disorder can be acquired or inherited, the hereditary form having an autosomal dominant inheritance pattern.
Among the signs and symptoms of adenylosuccinate lyase deficiency are the following:
- Aggressive behavior
- Microcephaly
- Autism
- Brachycephaly
- Mild Cerebellar hypoplasia
- Seizures
Prolidase deficiency generally becomes evident during infancy, but initial symptoms can first manifest anytime from birth to young adulthood. The condition results in a very diverse set symptoms, the severity of which can vary significantly between patients, depending on the degree to which prolidase activity is hampered by the individual underlying mutation(s) in each case. It is even possible, though rare, for affected individuals to be asymptomatic, in which case the disorder can only be identified through laboratory screening of the prospective patient and/or their extended family.
One of the signature features of PD is the elimination of high quantities of peptides through urine.
In addition, most of those affected exhibit persistent skin lesions (starting from a mild rash) or ulcers, primarily on the legs and feet, the formation of which normally begins during childhood. Clinically, these, among other dermatological issues, represent the most distinguishing and most frequent symptoms. These may never recede, potentially leading to severe infections that can, in the worst case, necessitate amputation.
PD patients exhibit a weak immune system and markedly elevated vulnerability to infections in general, and particularly those of the respiratory system, leading some who suffer from PD to acquire recurrent lung disease. They may also have an enlarged spleen (splenomegaly), and on some occasions the spleen and liver may both be enlarged (hepatosplenomegaly). Photosensitivity and hyperkeratosis have been associated with PD. Abnormal facial characteristics, consisting of pronounced eyes which are spaced far apart (hypertelorism), a high forehead, a compressed bridge of the nose or saddle nose, and a small lower jaw and chin (micrognathia), are also observed in the majority of cases.
Those affected by PD can also suffer intellectual disabilities (approx. 75% of recorded cases do) ranging from mild to severe – mental development during childhood may therefore progress more slowly.
Upshaw–Schulman syndrome (USS) is the recessively inherited form of thrombotic thrombocytopenic purpura (TTP), a rare and complex blood coagulation disease. USS is caused by the absence of the ADAMTS13 protease resulting in the persistence of ultra large von Willebrand factor multimers (ULVWF), causing episodes of acute thrombotic microangiopathy with disseminated multiple small vessel obstructions. These obstructions deprive downstream tissues from blood and oxygen, which can result in tissue damage and death. The presentation of an acute USS episode is variable but usually associated with thrombocytopenia, microangiopathic hemolytic anemia (MAHA) with schistocytes on the peripheral blood smear, fever and signs of ischemic organ damage in the brain, kidney and heart.
Defined as those seen in any macrocytic, megaloblastic anemia:
- Anemia: causing fatigue, conjuctival pallor, pale complexion, and in some cases, a mild icterus (yellowing of the eye).
- Glossitis ("shiny tongue"): shiny, glossy tongue.
- Cheilosis (stomatitis): Inflammation of the edges of the lips and the oral mucosa.
- Tabes dorsalis ("subacute combined degeneration of the spinal cord"): This involves the posterior section of the spinal cord and therefore involves proprioception (sense of position), touch, sense of vibration and in severe cases the lateral corticospinal tract, causing spastic paralysis of the limbs.
- Peripheral neuropathy: tingling sensation in the arms and legs.
- Pancytopenia: decreased number of blood cells of all lineages (RBCs, leucocytes, platelets), due to decreased bone marrow production.
- Methylmalonyl CoA-emia: defined as blood having an unusually high concentration of methylmalonyl CoA.
- Peripheral findings such as hypersegmented neutrophils and large RBCs on high field view of the blood smears.
- Laboratory findings indicating increased MCV (Mean Corpuscular Volume), decreased Hgb/Hct (indicating anemia), and decreased value of vitamin B in the blood.
- Proteinuria: protein found in the urine detected by analysis or by dipstick.
- Reversal of all symptoms except neurological symptoms, by IV injection of vitamin B.
- Schilling test indicating no radioactive vitamin B in the urine. (This test has dropped out of favor and should not be tried in patients with any form of renal failure).
This condition may involve the alpha granules or the dense granules.
Therefore the following examples include:
- Platelet alpha-granules
- Gray platelet syndrome
- Quebec platelet disorder
- Dense granules
- δ-Storage pool deficiency
- Hermansky–Pudlak syndrome
- Chédiak–Higashi syndrome
Barraquer–Simons syndrome (or acquired partial lipodystrophy, cephalothoracic lipodystrophy, and progressive lipodystrophy)) is a rare form of lipodystrophy,
which usually first affects the head, and then spreads to the thorax.
It is named for Luis Barraquer Roviralta (1855–1928), a Spanish physician, and Arthur Simons (1879–1942), a German physician. Some evidence links it to "LMNB2".
The "presentation" (signs/symptoms) of an individual with platelet storage pool deficiency is as follows: