Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The typical infant who has congenital glaucoma usually is initially referred to an ophthalmologist because of apparent corneal edema. The commonly described triad of epiphora (excessive tearing), blepharospasm and photophobia may be missed until the corneal edema becomes apparent.
Open-angle glaucoma is painless and does not have acute attacks, thus the lack of clear symptoms make screening via regular eye check-ups important. The only signs are gradually progressive visual field loss, and optic nerve changes (increased cup-to-disc ratio on fundoscopic examination).
About 10% of people with closed angles present with acute angle closure characterized by sudden ocular pain, seeing halos around lights, red eye, very high intraocular pressure (>30 mmHg), nausea and vomiting, suddenly decreased vision, and a fixed, mid-dilated pupil. It is also associated with an oval pupil in some cases. Acute angle closure is an emergency.
Opaque specks may occur in the lens in glaucoma, known as glaukomflecken.
Secondary glaucoma (H40.3-H40.6)
- Inflammatory glaucoma
- Phacogenic glaucoma
- Glaucoma secondary to intraocular hemorrhage
- Traumatic glaucoma
- Neovascular glaucoma (see below for more details)
- Drug-induced glaucoma
- Glaucoma of miscellaneous origin
Neovascular glaucoma, an uncommon type of glaucoma, is difficult or nearly impossible to treat, and is often caused by proliferative diabetic retinopathy (PDR) or central retinal vein occlusion (CRVO). It may also be triggered by other conditions that result in ischemia of the retina or ciliary body. Individuals with poor blood flow to the eye are highly at risk for this condition.
Neovascular glaucoma results when new, abnormal vessels begin developing in the angle of the eye that begin blocking the drainage. Patients with such condition begin to rapidly lose their eyesight. Sometimes, the disease appears very rapidly, especially after cataract surgery procedures. A new treatment for this disease, as first reported by Kahook and colleagues, involves the use of a novel group of medications known as anti-VEGF agents. These injectable medications can lead to a dramatic decrease in new vessel formation and, if injected early enough in the disease process, may lead to normalization of intraocular pressure. Currently, there are no high-quality controlled trials demonstrating a beneficial effect of anti-VEGF treatments in lowering IOP in people with neovascular glaucoma.
Toxic glaucoma is open angle glaucoma with an unexplained significant rise of intraocular pressure following unknown pathogenesis. Intraocular pressure can sometimes reach . It characteristically manifests as ciliary body inflammation and massive trabecular oedema that sometimes extends to Schlemm's canal. This condition is differentiated from malignant glaucoma by the presence of a deep and clear anterior chamber and a lack of aqueous misdirection. Also, the corneal appearance is not as hazy. A reduction in visual acuity can occur followed neuroretinal breakdown.
Associated factors include inflammation, drugs, trauma and intraocular surgery, including cataract surgery and vitrectomy procedures. Gede Pardianto (2005) reported on four patients who had toxic glaucoma. One of them underwent phacoemulsification with small particle nucleus drops. Some cases can be resolved with some medication, vitrectomy procedures or trabeculectomy. Valving procedures can give some relief, but further research is required.
The diagnosis is clinical. The intraocular pressure (IOP) can be measured in the office in a conscious swaddled infant using a Tonopen or hand-held Goldmann tonometer. Usually, the IOP in normal infants is in the range of 11-14 mmHg. Buphthalmos and Haab's striae can often be seen in case of congenital glaucoma.
This condition is usually unilateral, and its symptoms vary from none to mild blurring and discomfort. Signs include diffuse iris atrophy and small white keratic precipitates (deposits on the inner surface of the cornea), cells presenting in the anterior chamber as well as the anterior vitreous. Glaucoma and cataract occur frequently.
Buphthalmos in itself is merely a clinical sign and does not generate symptoms. Patients with glaucoma often initially have no symptoms; later, they can exhibit excessive tearing (lacrimation) and extreme sensitivity to light (photophobia). On ophthalmologic exam, one can detect increased intraocular pressure, distortion of the optic disc, and corneal edema, which manifests as haziness.
Other symptoms include a prominent eyeball, Haab's striae in the Descemet's membrane of the cornea, an enlarged cornea, and myopia.
The most common sign at presentation is leukocoria (abnormal white reflection of the retina). Symptoms typically begin as blurred vision, usually pronounced when one eye is closed (due to the unilateral nature of the disease). Often the unaffected eye will compensate for the loss of vision in the other eye; however, this results in some loss of depth perception and parallax. Deterioration of sight may begin in either the central or peripheral vision. Deterioration is likely to begin in the upper part of the vision field as this corresponds with the bottom of the eye where blood usually pools. Flashes of light, known as photopsia, and floaters are common symptoms. Persistent color patterns may also be perceived in the affected eye. Initially, these may be mistaken for psychological hallucinations, but are actually the result of both retinal detachment and foreign fluids mechanically interacting with the photoreceptors located on the retina.
One early warning sign of Coats' disease is yellow-eye in flash photography. Just as the red-eye effect is caused by a reflection off blood vessels in the back of a normal eye, an eye affected by Coats' will glow yellow in photographs as light reflects off cholesterol deposits. Children with yellow-eye in photographs are typically advised to immediately seek evaluation from an optometrist or ophthalmologist, who will assess and diagnose the condition and refer to a vitreo-retinal specialist.
Coats' disease itself is painless. Pain may occur if fluid is unable to drain from the eye properly, causing the internal pressure to swell, resulting in painful glaucoma.
Infantile glaucoma, which often produces the clinical sign of buphthalmos, can be caused when an abnormally narrow angle between the cornea and iris blocks the outflow of aqueous humor; this causes increased intraocular pressure and eventual enlargement of the globe (eyeball). Angle closure can be caused by developmental abnormalities of the eye as well as the presence of abnormal structures within the vitreous.
Fuchs heterochromic iridocyclitis (FHI) is a chronic unilateral uveitis appearing with the triad of heterochromia, predisposition to cataract and glaucoma, and keratitic precipitates on the posterior corneal surface. Patients are often asymptomatic and the disease is often discovered through investigation of the cause of the heterochromia or cataract. Neovascularisation (growth of new abnormal vessels) is possible and any eye surgery, such as cataract surgery, can cause bleeding from the fragile vessels in the atrophic iris causing accumulation of blood in anterior chamber of the eye, also known as hyphema.
The effects a coloboma has on the vision can be mild or more severe depending on the size and location of the gap. If, for example, only a small part of the iris is missing, vision may be normal, whereas if a large part of the retina or optic nerve is missing, vision may be poor and a large part of the visual field may be missing. This is more likely to cause problems with mobility if the lower visual field is absent. Other conditions can be associated with a coloboma. Sometimes, the eye may be reduced in size, a condition called microphthalmia. Glaucoma, nystagmus, scotoma, or strabismus may also occur.
With anterior lens luxation, the lens pushes into the iris or actually enters the anterior chamber of the eye. This can cause glaucoma, uveitis, or damage to the cornea. Uveitis (inflammation of the eye) causes the pupil to constrict (miosis) and trap the lens in the anterior chamber, leading to an obstruction of outflow of aqueous humour and subsequent increase in ocular pressure (glaucoma). Better prognosis is valued in lens replacement surgery (retained vision and normal intraocular pressure) when it is performed before the onset of secondary glaucoma. Glaucoma secondary to anterior lens luxation is less common in cats than dogs due to their naturally deeper anterior chamber and the liquification of the vitreous humour secondary to chronic inflammation. Anterior lens luxation is considered to be an ophthalmological emergency.
Many cases are asymptomatic, however patients many have decreased vision, glare, monocular diplopia or polyopia, and noticeable iris changes [2,6]. On exam patients have normal to decreased visual acuity, and a “beaten metal appearance” of the corneal endothelium, corneal edema, increased intraocular pressure, peripheral anterior synechiae, and iris changes [1,2,6].
Patients may have no specific symptoms. In some cases, patients may complain of lessened visual acuity or changes in their perceived visual field, and such changes may be secondary to or different from symptoms normally associated with cataracts or glaucoma.
PEX is characterized by tiny microscopic white or grey granular flakes which are clumps of proteins within the eye which look somewhat like dandruff when seen through a microscope and which are released by cells. The abnormal flakes, sometimes compared to amyloid-like material, are visible during an examination of the lens of an eye by an ophthalmologist or optometrist, which is the usual diagnosis. The white fluffy material is seen in many tissues both ocular and extraocular, such as in the anterior chamber structures, trabecular meshwork, central disc, zonular fibres, anterior hyaloid membrane, pupillary and anterior iris, trabecula, and occasionally the cornea. The flakes are widespread. One report suggested that the granular flakes were from abnormalities of the basement membrane in epithelial cells, and that they were distributed widely throughout the body and not just within structures of the eye. There is some research suggesting that the material may be produced in the iris pigment epithelium, ciliary epithelium, or the peripheral anterior lens epithelium. A similar report suggests that the proteins come from the lens, iris, and other parts of the eye. A report in 2010 found indications of an abnormal ocular surface in PEX patients, discovered by an eye staining method known as rose bengal.
PEX can become problematic when the flakes become enmeshed in a "spongy area" known as the trabecular meshwork and block its normal functioning, and may interact with degenerative changes in the Schlemm's canal and the juxtacanalicular area. The blockage leads to greater-than-normal elevated intraocular pressure which, in turn, can damage the optic nerve. The eye produces a clear fluid called the aqueous humor which subsequently drains such that there is a constant level of safe pressure within the eye, but glaucoma can result if this normal outflow of fluid is blocked. Glaucoma is an umbrella term indicating ailments which damage the neural cable from the eye to the brain called the optic nerve, and which can lead to a loss of vision. In most cases of glaucoma, typically called "primary open-angle glaucoma", the outflow does not happen normally but doctors can not see what is causing the blockage; with PEX, however, the flakes are believed to be a cause of the blockage. PEX flakes by themselves do not directly "cause" glaucoma, but can cause glaucoma indirectly by blocking the outflow of aqueous humor, which leads to higher intraocular pressure, and this can cause glaucoma. PEX has been known to cause a weakening of structures within the eye which help hold the eye's lens in place, called lens zonules.
Lens subluxation is also seen in dogs and is characterized by a partial displacement of the lens. It can be recognized by trembling of the iris (iridodonesis) or lens (phacodonesis) and the presence of an aphakic crescent (an area of the pupil where the lens is absent). Other signs of lens subluxation include mild conjunctival redness, vitreous humour degeneration, prolapse of the vitreous into the anterior chamber, and an increase or decrease of anterior chamber depth. Removal of the lens before it completely luxates into the anterior chamber may prevent secondary glaucoma. A nonsurgical alternative involves the use of a miotic to constrict the pupil and prevent the lens from luxating into the anterior chamber.
Most cases of retinal dysplasia in dogs are hereditary. It can involve one or both retinas. Retinal dysplasia can be focal, multifocal, geographic, or accompanied by retinal detachment. Focal and multifocal retinal dysplasia appears as streaks and dots in the central retina. Geographic retinal dysplasia appears as an irregular or horseshoe-shaped area of mixed hyper or hyporeflectivity in the central retina. Retinal detachment occurs with complete retinal dysplasia, and is accompanied by blindness in that eye. Cataracts or glaucoma can also occur secondary to retinal dysplasia. Other causes of retinal dysplasia in dogs include infection with canine adenovirus or canine herpesvirus, or radiation of the eye in newborns.
Childhood blindness is an important cause contributing to the burden of blindness. Blindness in children can be defined as a visual acuity of <3/60 in the eye with better vision of a child under 16 years of age. This generally means that the child cannot see something three feet (about one meter) away, that another child could see if it was 60 feet (about 20 meters) away.
Pseudoexfoliation syndrome, often abbreviated as PEX and sometimes as PES or PXS, is an aging-related systemic disease manifesting itself primarily in the eyes which is characterized by the accumulation of microscopic granular amyloid-like protein fibers. Its cause is unknown, although there is speculation that there may be a genetic basis. It is more prevalent in women than men, and in persons past the age of seventy. Its prevalence in different human populations varies; for example, it is prevalent in Scandinavia. The buildup of protein clumps can block normal drainage of the eye fluid called the aqueous humor and can cause, in turn, a buildup of pressure leading to glaucoma and loss of vision (pseudoexfoliation glaucoma, exfoliation glaucoma). As worldwide populations become older because of shifts in demography, PEX may become a matter of greater concern.
Typically a coloboma appears oval or comet shaped with round end towards the centre. There may be a few vessels (retinal or choroidal) at the edges. The surface may have irregular depression.
Aphakia is the absence of the lens of the eye, due to surgical removal, a perforating wound or ulcer, or congenital anomaly. It causes a loss of accommodation, far sightedness (hyperopia), and a deep anterior chamber. Complications include detachment of the vitreous or retina, and glaucoma.
Babies are rarely born with aphakia. Occurrence most often results from surgery to remove congenital cataract (clouding of the eye's lens, which can block light from entering the eye and focusing clearly). Congenital cataracts usually develop as a result of infection of the fetus or genetic reasons. It is often difficult to identify the exact cause of these cataracts, especially if only one eye is affected.
People with aphakia have relatively small pupils and their pupils dilate to a lesser degree.
The primary symptom is pupillary distortion (changing of the size or shape of the pupil). Distortion can occur in any segment of the iris. One part of the iris is pulled to a peak, and then returns to normal after the episode. Other symptoms may include blurred vision, abnormal periocular sensations (unusual feelings around the eyes), migraines, and feelings of a chilled face. Some patients who demonstrate tadpole pupil symptoms also experienced Horner’s syndrome or Adie’s tonic pupil
Tadpole pupil symptoms occur in episodes. Episodes are generally brief and less than 5 minutes, however, some episodes have been reported to last anywhere from 3 to 15 minutes. The episodes can occur multiple times a day for days, weeks, or months.
Studies show that a majority of those experiencing tadpole pupil are younger women from an age range of 24 to 48 years old, with no apparent health problems. Although women generally have the tadpole pupil, men are not unaffected by this disease and some have been reported to experience the symptoms.
Retinal dysplasia is an eye disease affecting the retina of animals and, less commonly, humans. It is usually a nonprogressive disease and can be caused by viral infections, drugs, vitamin A deficiency, or genetic defects. Retinal dysplasia is characterized by folds or rosettes (round clumps) of the retinal tissue.
Coats' usually affects only one eye (unilateral) and occurs predominantly in young males 1/100,000, with the onset of symptoms generally appearing in the first decade of life. Peak age of onset is between 6–8 years of age, but onset can range from 5 months to 71 years.
Coats' disease results in a gradual loss of vision. Blood leaks from the abnormal vessels into the back of the eye, leaving behind cholesterol deposits and damaging the retina. Coats' disease normally progresses slowly. At advanced stages, retinal detachment is likely to occur. Glaucoma, atrophy, and cataracts can also develop secondary to Coats' disease. In some cases, removal of the eye may be necessary (enucleation).
Ocular melanosis (OM), also known as ocular melanocytosis or melanosis oculi, is a congenital disease of the eye which affects about 1 in every 5000 people and is a risk factor for uveal melanoma. In dogs is found almost exclusively in the Cairn Terrier, where until recently it was known as pigmentary glaucoma. The disease is caused by an increase of melanocytes in the iris, choroid, and surrounding structures. Overproduction of pigment by these cells can block the trabecular meshwork through which fluid drains from the eye. The increased fluid in the eye leads to increased pressure, which can lead to glaucoma. In humans, this is sometimes known as pigment dispersion syndrome.
There are many causes of blindness in children. Blindness may be due to genetic mutations, birth defects, premature birth, nutritional deficiencies, infections, injuries, and other causes. Severe retinopathy of prematurity (ROP), cataracts and refractive error are also causes.
The most frequently affected parts of the eyes are:
- Whole globe (36%)
- Cornea (36%)
- Lens (11%)
- Retina (6%)
- Optic nerve (5%)
- Uvea (2%)
There are three classifications for this condition:
- Primary anophthalmia is a complete absence of eye tissue due to a failure of the part of the brain that forms the eye.
- Secondary anophthalmia the eye starts to develop and for some reason stops, leaving the infant with only residual eye tissue or extremely small eyes which can only be seen under close examination.
- Degenerative anophthalmia the eye started to form and, for some reason, degenerated. One reason for this occurring could be a lack of blood supply to the eye.