Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Women experiencing PAM may exhibit normal symptoms of malaria, but may also be asymptomatic or present with more mild symptoms, including a lack of the characteristic fever. This may prevent a woman from seeking treatment despite the danger to herself and her unborn child.
Pregnancy-associated malaria (PAM) or placental malaria is a presentation of the common illness that is particularly life-threatening to both mother and developing fetus. PAM is caused primarily by infection with "Plasmodium falciparum", the most dangerous of the four species of malaria-causing parasites that infect humans. During pregnancy, a woman faces a much higher risk of contracting malaria and of associated complications. Prevention and treatment of malaria are essential components of prenatal care in areas where the parasite is endemic.
While the average adult citizen of an endemic region possesses some immunity to the parasite, pregnancy causes complications that leave the woman and fetus extremely vulnerable. The parasite interferes with transmission of vital substances through the fetal placenta, often resulting in stillbirth, spontaneous abortion, or dangerously low birth weight. The tragedy of malaria in developing countries receives abundant attention from the international health community, but until recently PAM and its unique complications were not adequately addressed.
The signs and symptoms of malaria typically begin 8–25 days following infection; however, symptoms may occur later in those who have taken antimalarial medications as prevention. Initial manifestations of the disease—common to all malaria species—are similar to flu-like symptoms, and can resemble other conditions such as sepsis, gastroenteritis, and viral diseases. The presentation may include headache, fever, shivering, joint pain, vomiting, hemolytic anemia, jaundice, hemoglobin in the urine, retinal damage, and convulsions.
The classic symptom of malaria is paroxysm—a cyclical occurrence of sudden coldness followed by shivering and then fever and sweating, occurring every two days (tertian fever) in "P. vivax" and "P. ovale" infections, and every three days (quartan fever) for "P. malariae". "P. falciparum" infection can cause recurrent fever every 36–48 hours, or a less pronounced and almost continuous fever.
Severe malaria is usually caused by "P. falciparum" (often referred to as falciparum malaria). Symptoms of falciparum malaria arise 9–30 days after infection. Individuals with cerebral malaria frequently exhibit neurological symptoms, including abnormal posturing, nystagmus, conjugate gaze palsy (failure of the eyes to turn together in the same direction), opisthotonus, seizures, or coma.
Malaria has several serious complications. Among these is the development of respiratory distress, which occurs in up to 25% of adults and 40% of children with severe "P. falciparum" malaria. Possible causes include respiratory compensation of metabolic acidosis, noncardiogenic pulmonary oedema, concomitant pneumonia, and severe anaemia. Although rare in young children with severe malaria, acute respiratory distress syndrome occurs in 5–25% of adults and up to 29% of pregnant women. Coinfection of HIV with malaria increases mortality. Renal failure is a feature of blackwater fever, where hemoglobin from lysed red blood cells leaks into the urine.
Infection with "P. falciparum" may result in cerebral malaria, a form of severe malaria that involves encephalopathy. It is associated with retinal whitening, which may be a useful clinical sign in distinguishing malaria from other causes of fever. Enlarged spleen, enlarged liver or both of these, severe headache, low blood sugar, and hemoglobin in the urine with renal failure may occur. Complications may include spontaneous bleeding, coagulopathy, and shock.
Malaria in pregnant women is an important cause of stillbirths, infant mortality, abortion and low birth weight, particularly in "P. falciparum" infection, but also with "P. vivax".
Most people infected with the West Nile virus usually do not develop symptoms. However, some individuals can develop cases of severe fatigue, weakness, headaches, body aches, joint and muscle pain, vomiting, diarrhea, and rash, which can last for weeks or months. More serious symptoms have a greater risk of appearing in people over 60 years of age, or those suffering from cancer, diabetes, hypertension, and kidney disease.
Dengue fever is mostly characterized by high fever, headaches, joint pain, and rash. However, more severe instances can lead to hemorrhagic fever, internal bleeding, and breathing difficulty, which can be fatal.
Most people who are infected have no or few symptoms. Otherwise the most common signs and symptoms of Zika fever are fever, rash, conjunctivitis (red eyes), muscle and joint pain, and headache, which are similar to signs and symptoms of dengue and chikungunya fever. The time from a mosquito bite to developing symptoms is not yet known, but is probably a few days to a week. The disease lasts for several days to a week and is usually mild enough that people do not have to go to a hospital.
Due to being in the same family as dengue, there has been concern that it could cause similar bleeding disorders. However that has only been documented in one case, with blood seen in semen, also known as hematospermia.
Zika virus infections have been strongly associated with Guillain–Barré syndrome (GBS), which is a rapid onset of muscle weakness caused by the immune system damaging the peripheral nervous system, and which can progress to paralysis. While both GBS and Zika infection can simultaneously occur in the same individual, it is difficult to definitively identify Zika virus as the cause of GBS. Several countries affected by Zika outbreaks have reported increases in the rate of new cases of GBS. During the 2013–2014 outbreak in French Polynesia there were 42 reported cases of GBS over a 3-month period, compared to between 3 and 10 annually prior to the outbreak.
Symptoms vary on severity, from mild unnoticeable symptoms to more common symptoms like fever, rash, headache, achy muscle and joints, and conjunctivitis. Symptoms can last several days to weeks, but death resulting from this infection is rare.
Neglected tropical diseases (NTDs) are a diverse group of tropical infections which are especially common in low-income populations in developing regions of Africa, Asia, and the Americas. They are caused by a variety of pathogens such as viruses, bacteria, protozoa and helminths. These diseases are contrasted with the big three diseases (HIV/AIDS, tuberculosis, and malaria), which generally receive greater treatment and research funding. In sub-Saharan Africa, the effect of these diseases as a group is comparable to malaria and tuberculosis. NTD co-infection can also make HIV/AIDS and tuberculosis more deadly.
In some cases, the treatments are relatively inexpensive. For example, the treatment for schistosomiasis is US$0.20 per child per year. Nevertheless, in 2010 it was estimated that control of neglected diseases would require funding of between US$2 billion and US$3 billion over the subsequent five to seven years. Some pharmaceutical companies have committed to donating all the drug therapies required, and mass drug administration (for example mass deworming) has been successfully accomplished in several countries. However, preventive measures are often more accessible in the developed world, but not universally available in poorer areas.
Within developed countries, neglected tropical diseases affect the very poorest in society. In the United States, there are up to 1.46 million families including 2.8 million children living on less than two dollars a day. In countries such as these, the burdens of neglected tropical diseases are often overshadowed by other public health issues. However, many of the same issues put populations at risk in developed as developing nations. For example, from poverty stem problems such as lack of adequate housing, thus exposing individuals to the vectors of these diseases.
Twenty neglected tropical diseases are prioritized by the World Health Organization (WHO), though other organizations define NTDs differently. Chromoblastomycosis and other deep mycoses, scabies and other ectoparasites and snakebite envenoming were added to the list in 2017. These diseases are common in 149 countries, affecting more than 1.4 billion people (including more than 500 million children) and costing developing economies billions of dollars every year. They resulted in 142,000 deaths in 2013—down from 204,000 deaths in 1990. Of these 20, two were targeted for eradication (dracunculiasis (guinea-worm disease) by 2015 and yaws by 2020), and four for elimination (blinding trachoma, human African trypanosomiasis, leprosy and lymphatic filariasis by 2020).
Acanthocheilonemiasis is a rare tropical infectious disease caused by a parasite known as "Acanthocheilonema perstans". It can cause skin rashes, abdominal and chest pains, muscle and joint pains, neurological disorders and skin lumps. It is mainly found in Africa. The parasite is transmitted through the bite of small flies. Studies show that there are elevated levels of white blood cells.
Acanthocheilonemiasis belongs to a group of parasitic diseases known as filarial disease (nematode), all of which are classified as Neglected Tropical Diseases. Filarial disease results when microfilariae, which are nematode larvae, reach the lymphatic system; microfilariae reside in the serous cavities of humans. They have a five-stage life cycle that includes birth to thousands of live microfilariae within the host (i.e. human body), and then translocation via blood meal to the dermis layer of the skin. It is here that microfilariae cause major symptoms, which are edema and thickening of the skin and underlying connective tissues. It can also cause skin rashes, abdominal and chest pains, muscle (myalgia) and joint pains, neurological disorders and skin lumps. In addition, it causes spleen and liver enlargement, which is called hepatosplenomegaly. Studies show elevated levels of leukocytes, or white blood cells, which is referred to as eosinophilia. It is mainly found in Africa. The parasite is transmitted through the bite of small flies ("A. coliroides").
There are no specific symptoms or signs of hookworm infection, but they give rise to a combination of intestinal inflammation and progressive iron-deficiency anemia and protein deficiency. Coughing, chest pain, wheezing, and fever will sometimes result from severe infection. Epigastric pains, indigestion, nausea, vomiting, constipation, and diarrhea can occur early or in later stages as well, although gastrointestinal symptoms tend to improve with time. Signs of advanced severe infection are those of anemia and protein deficiency, including emaciation, cardiac failure and abdominal distension with ascites.
Larval invasion of the skin (mostly in the Americas) can produce a skin disease called cutaneous larva migrans also known as "creeping eruption". The hosts of these worms are not human and the larvae can only penetrate the upper five layers of the skin, where they give rise to intense, local itching, usually on the foot or lower leg, known as "ground itch". This infection is due to larvae from the "A. Braziliense" hookworm. The larvae migrate in tortuous tunnels between the "stratum basale" and "stratum corneum" of the skin, causing serpiginous vesicular lesions. With advancing movement of the larvae, the rear portions of the lesions become dry and crusty. The lesions are typically intensely itchy.
Half of all children and a quarter of previously healthy adults are asymptomatic with "Babesia" infection. When people do develop symptoms, the most common are fever and hemolytic anemia, symptoms that are similar to those of malaria. People with symptoms usually become ill 1 to 4 weeks after the bite, or 1 to 9 weeks after transfusion of contaminated blood products. A person infected with babesiosis gradually develops malaise and fatigue, followed by a fever. Hemolytic anemia, in which red blood cells are destroyed and removed from the blood, also develops. Chills, sweats, and thrombocytopenia are also common symptoms. Symptoms may last from several days to several months.
Less common symptoms and physical exam findings of mild-to-moderate babesiosis:
In more severe cases, symptoms similar to malaria occur, with fevers up to 40.5 °C (105 °F), shaking chills, and severe anemia (hemolytic anemia). Organ failure may follow, including adult respiratory distress syndrome. Severe cases occur mostly in people who have had a splenectomy. Severe cases are also more likely to occur in the very young, very old, and persons with immunodeficiency, such as HIV/AIDS patients.
A reported increase in human babesiosis diagnoses in the 2000s is thought to be caused by more widespread testing and higher numbers of people with immunodeficiencies coming in contact with ticks, the disease vector. Little is known about the occurrence of "Babesia" species in malaria-endemic areas, where "Babesia" can easily be misdiagnosed as "Plasmodium". Human patients with repeat babesiosis infection may exhibit premunity.
Generally speaking, acanthocheilonemiasis does not show initial symptoms. However, if symptoms do arise, it is typically in individuals who are visiting highly infected areas rather than natives to those areas. A major common laboratory finding is an increase in specialized white blood cells, which is called eosinophilia.
Other symptoms include itchy skin, neurological symptoms, abdominal and chest pain, muscle pain, and swelling underneath the skin. If there are abnormally high levels of white blood cells, then a physical examination will most likely find an enlarged spleen or liver.
In certain scenarios, nematodes may physically lodge into the chest or abdomen, resulting in an inflammation. Diagnosis of this condition usually occurs via a blood smear examination under light microscopy.
The term "hookworm" is sometimes used to refer to hookworm infection. A hookworm is a type of parasitic worm (helminth).
Congenital malaria is an extremely rare condition which occurs due to transplacental transmission of maternal infection.
Clinical features include fever, irritability, feeding problems, anemia, hepatosplenomegaly and jaundice. Clinical features commence only after 3 weeks due to the protective effect of transplacentally transmitted antibodies.
Tropical diseases are diseases that are prevalent in or unique to tropical and subtropical regions. The diseases are less prevalent in temperate climates, due in part to the occurrence of a cold season, which controls the insect population by forcing hibernation. However, many were present in northern Europe and northern America in the 17th and 18th centuries before modern understanding of disease causation. The initial impetus for tropical medicine was to protect the health of colonialists, notably in India under the British Raj. Insects such as mosquitoes and flies are by far the most common disease carrier, or vector. These insects may carry a parasite, bacterium or virus that is infectious to humans and animals. Most often disease is transmitted by an insect "bite", which causes transmission of the infectious agent through subcutaneous blood exchange. Vaccines are not available for most of the diseases listed here, and many do not have cures.
Human exploration of tropical rainforests, deforestation, rising immigration and increased international air travel and other tourism to tropical regions has led to an increased incidence of such diseases.
Protozoan infections are parasitic diseases caused by organisms formerly classified in the Kingdom Protozoa. They include organisms classified in Amoebozoa, Excavata, and Chromalveolata.
Examples include "Entamoeba histolytica", "Plasmodium" (some of which cause malaria), and "Giardia lamblia". "Trypanosoma brucei", transmitted by the tsetse fly and the cause of African sleeping sickness, is another example.
The species traditionally collectively termed "protozoa" are not closely related to each other, and have only superficial similarities (eukaryotic, unicellular, motile, though with exceptions). The terms "protozoa" (and protist) are usually discouraged in the modern biosciences. However, this terminology is still encountered in medicine. This is partially because of the conservative character of medical classification, and partially due to the necessity of making identifications of organisms based upon appearances and not upon DNA.
Protozoan infections in animals may be caused by organisms in the sub-class Coccidia (disease: Coccidiosis) and species in the genus "Besnoitia" (disease: Besnoitiosis).
Several pathogenic protozoans appear to be capable of sexual processes involving meiosis (or at least a modified form of meiosis). Included among these protozoans are "Plasmodium falciparum" (malaria), "Toxoplasma gondii" (toxoplasmosis), "Leishmania" species (leishmaniases), "Trypanosoma brucei" (African sleeping sickness), "Trypanosoma cruzi" (Chagas disease) and "Giardia intestinalis" (giardiasis).
Avian malaria is a parasitic disease of birds, caused by parasite species belonging to the genera "Plasmodium" and "Hemoproteus" (phylum Apicomplexa, class Haemosporidia, family Plasmoiidae). The disease is transmitted by a dipteran vector including mosquitoes in the case of "Plasmodium" parasites and biting midges for "Hemoproteus." The range of symptoms and effects of the parasite on its bird hosts is very wide, from asymptomatic cases to drastic population declines due to the disease, as is the case of the Hawaiian honeycreepers. The diversity of parasites is large, as it is estimated that there are approximately as many parasites as there are species of hosts. Co-speciation and host switching events have contributed to the broad range of hosts that these parasites can infect, causing avian malaria to be a widespread global disease, found everywhere except Antarctica.
Babesiosis is a malaria-like parasitic disease caused by infection with "Babesia", a genus of Apicomplexa. Human babesiosis is an uncommon but emerging disease in the Northeastern and Midwestern United States and parts of Europe, and sporadic throughout the rest of the world. It occurs in warm weather. Ticks transmit the human strain of babesiosis, so it often presents with other tick-borne illnesses such as Lyme disease. After trypanosomes, "Babesia" is thought to be the second-most common blood parasite of mammals, and they can have a major impact on health of domestic animals in areas without severe winters. In cattle, a major host, the disease is known as Texas cattle fever, redwater, or piroplasmosis.
Diseases of poverty is a term sometimes used to collectively describe diseases, disabilities, and health conditions that are more prevalent among the poor than among wealthier people. In many cases poverty is considered the leading risk factor or determinant for such diseases, and in some cases the diseases themselves are identified as barriers to economic development that would end poverty. Diseases of poverty are often co-morbid and ubiquitous with malnutrition.
These diseases triggered in part by poverty are in contrast to so-called "diseases of affluence", which are diseases thought to be a result of increasing wealth in a society.
The signs and symptoms of helminthiasis depend on a number of factors including: the site of the infestation within the body; the type of worm involved; the number of worms and their volume; the type of damage the infesting worms cause; and, the immunological response of the body. Where the burden of parasites in the body is light, there may be no symptoms.
Certain worms may cause particular constellations of symptoms. For instance, taeniasis can lead to seizures due to neurocysticercosis.
Avian malaria is most notably caused by Plasmodium relictum, a protist that infects birds in all parts of the world apart from Antarctica. There are several other species of "Plasmodium" that infect birds, such as "Plasmodium anasum" and "Plasmodium gallinaceum", but these are of less importance except, in occasional cases, for the poultry industry. The disease is found worldwide, with important exceptions. Usually, it does not kill birds. However, in areas where avian malaria is newly introduced, such as the islands of Hawaiʻi, it can be devastating to birds that have lost evolutionary resistance over time.
In extreme cases of intestinal infestation, the mass and volume of the worms may cause the outer layers of the intestinal wall, such as the muscular layer, to tear. This may lead to peritonitis, volvulus, and gangrene of the intestine.
In pregnancy, there is an increased susceptibility and/or severity of several infectious diseases.
Neonatal infections are infections of the neonate (newborn) during the neonatal period or first four weeks after birth. Neonatal infections may be contracted by transplacental transfer in utero, in the birth canal during delivery (perinatal), or by other means after birth. Some neonatal infections are apparent soon after delivery, while others may develop postpartum within the first week or month. Some infections acquired in the neonatal period do not become apparent until much later such as HIV, hepatitis B and malaria.
There is a higher risk of infection for preterm or low birth weight neonates. Respiratory tract infections contracted by preterm neonates may continue into childhood or possibly adulthood with long-term effects that limit one's ability to engage in normal physical activities, decreasing one's quality of life and increasing health care costs. In some instances, neonatal respiratory tract infections may increase one's susceptibility to future respiratory infections and inflammatory responses related to lung disease.
Antibiotics can be effective treatments for neonatal infections, especially when the pathogen is quickly identified. Instead of relying solely on culturing techniques, pathogen identification has improved substantially with advancing technology; however, neonate mortality has not kept pace and remains 20% to 50%. While preterm neonates are at a particularly high risk, full term and post-term infants can also develop infection. Neonatal infection may also be associated with premature rupture of membranes (breakage of the amniotic sac) which substantially increases the risk of neonatal sepsis by allowing passage for bacteria to enter the womb prior to the birth of the infant. Neonatal infection can be distressing to the family and it initiates concentrated effort to treat it by clinicians.Research to improve treatment of infections and prophylactic treatment of the mother to avoid infections of the infant is ongoing.