Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The various signs and symptoms in Sheehan's syndrome are caused by damage to the pituitary, which causes a decrease in one or more hormones it normally secretes (see Pathophysiology section). Since the pituitary controls many glands in the endocrine system, partial or complete loss of a variety of functions may result.
Most common initial symptoms of Sheehan's syndrome are agalactorrhea (absence of lactation) and/or difficulties with lactation. Many women also report amenorrhea or oligomenorrhea after delivery. In some cases, a woman with Sheehan syndrome might be relatively asymptomatic, and the diagnosis is not made until years later, with features of hypopituitarism. Such features include secondary hypothyroidism with tiredness, intolerance to cold, constipation, weight gain, hair loss and slowed thinking, as well as a slowed heart rate and low blood pressure. Another such feature is secondary adrenal insufficiency, which, in the rather chronic case is similar to Addison's disease with symptoms including fatigue, weight loss, hypoglycemia (low blood sugar levels), anemia and hyponatremia (low sodium levels). Such a woman may, however, become acutely exacerbated when her body is stressed by, for example, a severe infection or surgery years after her delivery, a condition equivalent with an Addisonian crisis. The symptoms of adrenal crisis should be treated immediately and can be life-threatening. Gonadotropin deficiency will often cause amenorrhea, oligomenorrhea, hot flashes, or decreased libido. Growth hormone deficiency causes many vague symptoms including fatigue and decreased muscle mass.
Uncommonly, Sheehan syndrome may also appear acutely after delivery, mainly by hyponatremia. There are several possible mechanisms by which hypopituitarism can result in hyponatremia, including decreased free-water clearance by hypothyroidism, direct syndrome of inappropriate antidiuretic hormone (ADH) hypersecretion, decreased free-water clearance by glucocorticoid deficiency (independent of ADH). The potassium level in these situations is normal, because adrenal production of aldosterone is not dependent on the pituitary.
Deficiency of all anterior pituitary hormones is more common than individual hormone deficiency.
Deficiency of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), together referred to as the gonadotropins, leads to different symptoms in men and women. Women experience oligo- or amenorrhea (infrequent/light or absent menstrual periods respectively) and infertility. Men lose facial, scrotal and trunk hair, as well as suffering decreased muscle mass and anemia. Both sexes may experience a decrease in libido and loss of sexual function, and have an increased risk of osteoporosis (bone fragility). Lack of LH/FSH in children is associated with delayed puberty.
Growth hormone (GH) deficiency leads to a decrease in muscle mass, central obesity (increase in body fat around the waist) and impaired attention and memory. Children experience growth retardation and short stature.
Adrenocorticotropic hormone (ACTH) deficiency leads to adrenal insufficiency, a lack of production of glucocorticoids such as cortisol by the adrenal gland. If the problem is chronic, symptoms consist of fatigue, weight loss, failure to thrive (in children), delayed puberty (in adolescents), hypoglycemia (low blood sugar levels), anemia and hyponatremia (low sodium levels). If the onset is abrupt, collapse, shock and vomiting may occur. ACTH deficiency is highly similar to primary Addison's disease, which is cortisol deficiency as the result of direct damage to the adrenal glands; the latter form, however, often leads to hyperpigmentation of the skin, which does not occur in ACTH deficiency.
Thyroid-stimulating hormone (TSH) deficiency leads to hypothyroidism (lack of production of thyroxine (T4) and triiodothyronine (T3) in the thyroid). Typical symptoms are tiredness, intolerance to cold, constipation, weight gain, hair loss and slowed thinking, as well as a slowed heart rate and low blood pressure. In children, hypothyroidism leads to delayed growth and in extreme inborn forms to a syndrome called "cretinism".
Prolactin (PRL) plays a role in breastfeeding, and inability to breastfeed may point at abnormally low prolactin levels.
The hormones of the pituitary have different actions in the body, and the symptoms of hypopituitarism therefore depend on which hormone is deficient. The symptoms may be subtle and are often initially attributed to other causes. In most of the cases, three or more hormones are deficient. The most common problem is insufficiency of follicle-stimulating hormone (FSH) and/or luteinizing hormone (LH) leading to sex hormone abnormalities. Growth hormone deficiency is more common in people with an underlying tumor than those with other causes.
Sometimes, there are additional symptoms that arise from the underlying cause; for instance, if the hypopituitarism is due to a growth hormone-producing tumor, there may be symptoms of acromegaly (enlargement of the hands and feet, coarse facial features), and if the tumor extends to the optic nerve or optic chiasm, there may be visual field defects. Headaches may also accompany pituitary tumors, as well as pituitary apoplexy (infarction or haemorrhage of a pituitary tumor) and lymphocytic hypophysitis (autoimmune inflammation of the pituitary). Apoplexy, in addition to sudden headaches and rapidly worsening visual loss, may also be associated with double vision that results from compression of the nerves in the adjacent cavernous sinus that control the eye muscles.
Pituitary failure results in many changes in the skin, hair and nails as a result of the absence of pituitary hormone action on these sites.
In the developed world it is a rare complication of pregnancy, usually occurring after excessive blood loss. The presence of disseminated intravascular coagulation (i.e., in amniotic fluid embolism or HELLP syndrome) also appears to be a factor in its development.
The common symptoms include:
- hyper-pigmentation of the skin
- visual disturbances
- headaches
- abnormal high levels of beta-MSH and ACTH
- abnormal enlargements of the pituitary gland,
- interruption of menstrual cycles in women
Hypothalamic disease is a disorder presenting primarily in the hypothalamus, which may be caused by damage resulting from malnutrition, including anorexia and bulimia eating disorders, genetic disorders, radiation, surgery, head trauma, lesion, tumour or other physical injury to the hypothalamus. The hypothalamus is the control center for several endocrine functions. Endocrine systems controlled by the hypothalamus are regulated by anti-diuretic hormone (ADH), corticotropin-releasing hormone, gonadotropin-releasing hormone, growth hormone-releasing hormone, oxytocin, all of which are secreted by the hypothalamus. Damage to the hypothalamus may impact any of these hormones and the related endocrine systems. Many of these hypothalamic hormones act on the pituitary gland. Hypothalamic disease therefore affects the functioning of the pituitary and the target organs controlled by the pituitary, including the adrenal glands, ovaries and testes, and the thyroid gland.
Numerous dysfunctions manifest as a result of hypothalamic disease. Damage to the hypothalamus may cause disruptions in body temperature regulation, growth, weight, sodium and water balance, milk production, emotions, and sleep cycles. Hypopituitarism, neurogenic diabetes insipidus, tertiary hypothyroidism, and developmental disorders are examples of precipitating conditions caused by hypothalamic disease.
Nelson's syndrome is a rare disorder and occurs in patients who have had both adrenal glands removed owing to Cushing's disease. During the disorder the patient develops macroadenomas that secrete adrenocorticotropic hormone (ACTH). The severity of the disease is dependent upon the effect of ACTH release on the skin, pituitary hormone loss, and the effect the tumor has on the surrounding structures within the body.
The first case of Nelson’s syndrome was reported in 1958 by Nelson et al. Dr. Don Nelson, an endocrinologist, named the disease. In comparison to the 1980s there have been fewer published cases in the 1990s. Thus, Nelson’s syndrome has become less prevalent. The disease becoming less prevalent is supported by much advancement in the medical field. Within the past ten to twenty years, improvements have been made with identification and care for patients with Cushing’s disease. Improvements have been made with techniques such as pituitary radiation therapy, ACTH assay, transsphenoidal pituitary surgery, higher resolution MRIs, and sampling of the inferior petrosal sinus. The advancements mentioned prior are what have allowed physicians to pursue other routes for Cushing’s disease therapy that don’t involve bilateral adrenalectomy.
Nelson’s syndrome is also referred to as post adrenalectomy syndrome and is a result of an adrenalectomy performed for Cushing’s disease. Corticotroph adenomas are detected in more females than males. Therefore, Nelson’s syndrome is observed in more females than males. Corticotroph adenomas are also detected in the younger population compared to the older population. Earlier, Nelson's syndrome was observed in 20-40% of patients who had a bilateral adrenalectomy with a pituitary adenoma. Nelson's syndrome is observed in 8-44% of the population who have undergone bilateral adrenalectomy treatment for Cushing's disease.
Recognised effects include:
- Increased 5-alpha-reductase
- Reduced sex hormone-binding globulin (SHBG)
- Reduced muscle mass and strength
- Baldness in men
- Reduced bone mass and osteoporosis
- Reduced energy
- Impaired concentration and memory loss
- Increased body fat, particularly around the waistline
- Lipid abnormalities, particularly raised LDL cholesterol
- Increased levels of fibrinogen and plasminogen activator inhibitor
- Cardiac dysfunction, including a thickened intima media
Severe prenatal deficiency of GH, as occurs in congenital hypopituitarism, has little effect on fetal growth. However, prenatal and congenital deficiency can reduce the size of a male's penis, especially when gonadotropins are also deficient. Besides micropenis in males, additional consequences of severe deficiency in the first days of life can include hypoglycemia and exaggerated jaundice (both direct and indirect hyperbilirubinemia).
Even congenital GH deficiency does not usually impair length growth until after the first few months of life. From late in the first year until mid teens, poor growth and/or shortness is the hallmark of childhood GH deficiency. Growth is not as severely affected in GH deficiency as in untreated hypothyroidism, but growth at about half the usual velocity for age is typical. It tends to be accompanied by delayed physical maturation so that bone maturation and puberty may be several years delayed. When severe GH deficiency is present from birth and never treated, adult heights can be as short as 48-65 inches (122–165 cm).
Severe GH deficiency in early childhood also results in slower muscular development, so that gross motor milestones such as standing, walking, and jumping may be delayed. Body composition (i.e., the relative amounts of bone, muscle, and fat) is affected in many children with severe deficiency, so that mild to moderate chubbiness is common (though GH deficiency alone rarely causes severe obesity). Some severely GH-deficient children have recognizable, cherubic facial features characterized by maxillary hypoplasia and forehead prominence (said to resemble a kewpie doll).
Other side effects in children include sparse hair growth and frontal recession, and pili torti and trichorrhexis nodosa are also sometimes present.
Galactorrhea hyperprolactinemia is increased blood prolactin levels associated with galactorrhea (abnormal milk secretion). It may be caused by such things as certain medications, pituitary disorders and thyroid disorders. The condition can occur in males as well as females. Relatively common etiologies include prolactinoma, medication effect, kidney failure, granulomatous diseases of the pituitary gland, and disorders which interfere with the hypothalamic inhibition of prolactin release. Ectopic (non-pituitary) production of prolactin may also occur. Galactorrhea hyperprolactinemia is listed as a “rare disease” by the Office of Rare Diseases of the National Institutes of Health. This means that it affects less than 200,000 people in the United States population.
The hypothalamus and pituitary gland are tightly integrated. Damage to the hypothalamus will impact the responsiveness and normal functioning of the pituitary. Hypothalamic disease may cause insufficient or inhibited signalling to the pituitary leading to deficiencies of one or more of the following hormones: thyroid-stimulating hormone, adrenocorticotropic hormone, beta-endorphin, luteinizing hormone, follicle-stimulating hormone, and melanocyte–stimulating hormones. Treatment for hypopituitarism involves hormone replacement therapy.
In women, a high blood level of prolactin often causes hypoestrogenism with anovulatory infertility and a decrease in menstruation. In some women, menstruation may disappear altogether (amenorrhoea). In others, menstruation may become irregular or menstrual flow may change. Women who are not pregnant or nursing may begin producing breast milk. Some women may experience a loss of libido (interest in sex) and breast pain, especially when prolactin levels begin to rise for the first time, as the hormone promotes tissue changes in the breast. Intercourse may become difficult or painful because of vaginal dryness.
In men, the most common symptoms of hyperprolactinaemia are decreased libido, sexual dysfunction (in both men and women), erectile dysfunction, infertility, and gynecomastia. Because men have no reliable indicator such as menstruation to signal a problem, many men with hyperprolactinaemia being caused by a pituitary adenoma may delay going to the doctor until they have headaches or eye problems caused by the enlarged pituitary pressing against the adjacent optic chiasm. They may not recognize a gradual loss of sexual function or libido. Only after treatment do some men realize they had a problem with sexual function.
Because of hypoestrogenism and hypoandrogenism, hyperprolactinaemia can lead to osteoporosis.
Symptoms of galactorrhea hyperprolactinemia include a high blood prolactin level, abnormal milk production in the breast, galactorrhea, menstrual abnormalities, reduced libido, reduced fertility, puberty problems, and headaches.
Hyperprolactinaemia may be caused by either disinhibition (e.g., compression of the pituitary stalk or reduced dopamine levels) or excess production from a prolactinoma (a type of pituitary adenoma). A blood serum prolactin level of 1000–5000 mIU/L could be from either mechanism, but >5000 mIU/L (>200 µg/L) is likely due to the activity of an adenoma; macroadenomas (large tumours over 10 mm diameter) have levels of prolactin up to 100,000 mIU/L.
Hyperprolactinemia inhibits the secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus (by increasing the release of dopamine from the arcuate nucleus), which in turn inhibits the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland and results in diminished gonadal sex hormone production (termed hypogonadism). This is the cause of many of the symptoms described below.
In many people, elevated prolactin levels remain unexplained and may represent a form of hypothalamic–pituitary–adrenal axis dysregulation.
Hypoprolactinemia is associated with ovarian dysfunction in women, and metabolic syndrome, anxiety symptoms, arteriogenic erectile dysfunction, premature ejaculation, oligozoospermia (low concentration of sperm in semen), asthenospermia (reduced sperm motility), hypofunction of seminal vesicles, and hypoandrogenism in men. In one study, normal sperm characteristics were restored when prolactin levels were brought up to normal values in men with hypoprolactinemia.
Hypoprolactinemia can be a cause of lactation failure after childbirth.
Guidelines for diagnosing hypoprolactinemia are defined as prolactin levels below 3 µg/L in women, and 5 µg/L in men.
Various psychiatric manifestations have been associated with pituitary disorders including pituitary adenomas. Psychiatric symptoms such as depression, anxiety apathy, emotional instability, easy irritability and hostility have been noted.
Hormone secreting pituitary adenomas cause one of several forms of hyperpituitarism. The specifics depend on the type of hormone. Some tumors secrete more than one hormone, the most common combination being GH and prolactin, which present as unexpected bone growth and unexpected lactation (in both men and women).
A patient with pituitary adenoma may present with visual field defects, classically bitemporal hemianopsia. It arises from the compression of the optic nerve by the tumor. The specific area of the visual pathway at which compression by these tumours occurs is at the optic chiasma.
The anatomy of this structure causes pressure on it to produce a defect in the temporal visual field on both sides, a condition called bitemporal hemianopsia. If originating superior to the optic chiasm, more commonly in a craniopharyngioma of the pituitary stalk, the visual field defect will first appear as bitemporal inferior quadrantanopia, if originating inferior to the optic chiasm the visual field defect will first appear as bitemporal superior quadrantanopia. Lateral expansion of a pituitary adenoma can also compress the abducens nerve, causing a lateral rectus palsy.
Also, a pituitary adenoma can cause symptoms of increased intracranial pressure.
Prolactinomas often start to give symptoms especially during pregnancy, when the hormone progesterone increases the tumor's growth rate.
Various types of headaches are common in patients with pituitary adenomas. The adenoma may be the prime causative factor behind the headache or may serve to exacerbate a headache caused by other factors. Amongst the types of headaches experienced are both chronic and episodic migraine, and more uncommonly various unilateral headaches; primary stabbing headache, short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT) - another type of stabbing headache characterized by short stabs of pain -, cluster headache, and hemicrania continua (HS).
Non-secreting adenomas can go undetected for an extended time because no obvious abnormalities are seen; the gradual reduction in normal activities due to decreased production of hormones is rather less evident. For example, insufficient adrenocorticotropic hormone means that the adrenal glands will not produce sufficient cortisol, resulting in slow recovery from illness, inflammation and chronic fatigue; insufficient growth hormone in children and adolescents leads to diminished stature but which can have many other explanations.
Hypophysitis is a fairly newly discovered disease. There are four categories of symptoms and signs. Most commonly, the initial symptoms are headaches and visual disturbances. Some symptoms are derived from the lesser functioning of the adenohypophyseal hormones. Of the adenohypophyseal hormones, the most frequently affected are corticotropes, lactotropes and gonadotropes, all which are found in the anterior pituitary. Polyuria is also a common symptom – which results in very dilute urine, as well as polydipsia which means having extreme thirst. Another symptom is hyperprolactinemia, which is when there are abnormally high prolactin levels in the blood. Usually, a mass will be found located on the sella turcica and loss of hormonal function.
Adrenal crisis is caused by a deficiency of cortisol resulting from Addison's disease, congenital adrenal hyperplasia (CAH), corticosteroid biosynthetic enzyme defects or pituitary disorders (such as Sheehan's syndrome, pituitary adenoma, hypopituitarism (inactive or underactive pituitary) causing failure to activate the adrenal glands.
Characteristic symptoms are:
- Sudden penetrating pain in the legs, lower back or abdomen
- Confusion, psychosis, slurred speech
- Severe lethargy
- Convulsions
- Fever
- Hyperkalemia (elevated potassium level in the blood)
- Hypercalcemia (elevated calcium level in the blood): the cause of hypercalcemia is a combination of increased calcium input into the extracellular space and reduced calcium removal by the kidney, this last caused by decreased glomerular filtration and increased tubular calcium reabsorption. Both renal factors are secondary to volume depletion and, in fact, improve rapidly during rehydration with saline infusion.
- Hypoglycemia (reduced level of blood glucose)
- Hyponatremia (low sodium level in the blood)
- Hypotension (low blood pressure)
- Hypothyroid (low T4 level)
- Severe vomiting and diarrhea, resulting in dehydration
- Syncope (loss of consciousness and ability to stand)
Hypophysitis refers to an inflammation of the pituitary gland. Hypophysitis is rare and not fully understood.
Hypophysitis is commonly known as Lymphocytic Hypophysitis because the lymphocytic infiltration was limited to the anterior pituitary.
Thyroid disease in women is an autoimmune disease that affects the thyroid in women. This condition can have a profound effect during pregnancy and on the child. It also is called Hashimoto's thyroiditis (theye-royd-EYET-uhss). During pregnancy, the infant may be seriously affected and have a variety of birth defects. Many women with Hashimoto's disease develop an underactive thyroid. They may have mild or no symptoms at first, but symptoms tend to worsen over time. If a woman is pregnant and has symptoms of Hashimoto's disease, the clinician will do an exam and order one or more tests.
The thyroid is a small gland in the front of the neck. The thyroid makes hormones called T3 and T4 that regulate how the body uses energy. Thyroid hormone levels are controlled by the pituitary, which is a pea-sized gland in the brain. It makes thyroid stimulating hormone (TSH), which triggers the thyroid to make thyroid hormone.
In thyroid disease the immune system makes antibodies that damage thyroid cells and interfere with their ability to make thyroid hormone. Over time, thyroid damage can cause thyroid hormone levels to be too low. This is called an underactive thyroid or hypothyroidism (heye-poh-THEYE-royd-ism). An underactive thyroid causes every function of the body to slow down, such as heart rate, brain function, and the rate your body turns food into energy. Hashimoto's disease is the most common cause of an underactive thyroid. It is closely related to Graves' disease, another autoimmune disease affecting the thyroid.
Postpartum thyroiditis is a phenomenon observed following pregnancy and may involve hyperthyroidism, hypothyroidism or the two sequentially. It affects about 5% of all women within a year after giving birth. The first phase is typically hyperthyroidism. Then, the thyroid either returns to normal or a woman develops hypothyroidism. Of those women who experience hypothyroidism associated with postpartum thyroiditis, one in five will develop permanent hypothyroidism requiring lifelong treatment.
Postpartum thyroiditis is believed to result from the modifications to the immune system necessary in pregnancy, and histologically is a subacute lymphocytic thyroiditis. The process is normally self-limiting, but when conventional antibodies are found there is a high chance of this proceeding to permanent hypothyroidism. Postpartum thyroiditis is a member of the group of thyroiditis conditions known as resolving thyroiditis.
Hyperthyroidism occurs in about 0.2-0.4% of all pregnancies. Most cases are due to Graves’ disease although less common causes (e.g. toxic nodules and thyroiditis) may be seen. Clinical assessment alone may occasionally be inadequate in differentiating hyperthyroidism from the hyperdynamic state of pregnancy. Distinctive clinical features of Graves’ disease include the presence of ophthalmopathy, diffuse goitre and pretibial myxoedema. Also, hyperthyroidism must be distinguished from gestational transient thyrotoxicosis, a self-limiting hyperthyroid state due to the thyroid stimulatory effects of beta-hCG . This distinction is important since the latter condition is typically mild and will not usually require specific antithyroid treatment. Red cell zinc may also be useful in differentiating the two. Hyperthyroidism due to Graves’ disease may worsen in the first trimester of pregnancy, remit in later pregnancy, and subsequently relapse in the postpartum.