Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms of pulmonary fibrosis are mainly:
- Shortness of breath, particularly with exertion
- Chronic dry, hacking coughing
- Fatigue and weakness
- Chest discomfort including chest pain
- Loss of appetite and rapid weight loss
Pulmonary fibrosis is suggested by a history of progressive shortness of breath (dyspnea) with exertion. Sometimes fine inspiratory crackles can be heard at the lung bases on auscultation. A chest x-ray may or may not be abnormal, but high-resolution CT will frequently demonstrate abnormalities.
Pulmonary fibrosis (literally "scarring of the lungs") is a respiratory disease in which scars are formed in the lung tissues, leading to serious breathing problems. Scar formation, the accumulation of excess fibrous connective tissue (the process called fibrosis), leads to thickening of the walls, and causes reduced oxygen supply in the blood. As a consequence patients suffer from perpetual shortness of breath.
In some patients the specific cause of the disease can be diagnosed, but in others the probable cause cannot be determined, a condition called idiopathic pulmonary fibrosis. There is no known cure for the scars and damage in the lung due to pulmonary fibrosis.
In many patients, symptoms are present for a considerable time before diagnosis. The most common clinical features of IPF include the following:
- Age over 50 years
- Dry, non-productive cough on exertion
- Progressive exertional dyspnea (shortness of breath with exercise)
- Dry, inspiratory bibasilar "velcro-like" crackles on auscultation (a crackling sound in the lungs during inhalation similar to Velcro being torn apart slowly, heard with a stethoscope).
- Clubbing of the digits, a disfigurement of the finger tips or toes (see image)
- Abnormal pulmonary function test results, with evidence of restriction and impaired gas exchange.
Some of these features are due to chronic hypoxemia (oxygen deficiency in the blood), are not specific for IPF, and can occur in other pulmonary disorders. IPF should be considered in all patients with unexplained chronic exertional dyspnea who present with cough, inspiratory bibasilar crackles, or finger clubbing.
Assessment of "velcro" crackles on lung auscultation is a practical way to improve the earlier diagnosis of IPF. Fine crackles are easily recognized by clinicians and are characteristic of IPF.
If bilateral fine crackles are present throughout the inspiratory time and are persisting after several deep breaths, and if remaining present on several occasions several weeks apart in a subject aged ≥60 years, this should raise the suspicion of IPF and lead to consideration of an HRCT scan of the chest which is more sensitive than a chest X-ray. As crackles are not specific for IPF, they must prompt a thorough diagnostic process.
Idiopathic pulmonary fibrosis (IPF) is a chronic irreversible and ultimately fatal disease characterized by a progressive decline in lung function. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This official statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was approved by the ATS board of directors, June 2013 and by the ERS Steering Committee, March 2013. "Am Respir Crit Care Med." 188 (6): 733–748. September 15, 2013. The term pulmonary fibrosis means scarring of lung tissue and is the cause of worsening dyspnea (shortness of breath). Fibrosis is usually associated with a poor prognosis.
IPF belongs to a large group of more than 200 lung diseases known as interstitial lung diseases (ILDs), characterized by the involvement of lung interstitium. The interstitium, the tissue between the air sacs in the lung, is the primary site of injury in ILDs. However, these disorders frequently affect not only the interstitium, but also the airspaces, peripheral airways, and vessels. Lung tissue from people with IPF shows a characteristic histopathologic pattern known as usual interstitial pneumonia (UIP). UIP is therefore the pathologic counterpart of IPF. The term 'idiopathic' is used because the cause of pulmonary fibrosis is still unknown. IPF usually occurs in adults of between 50 and 70 years of age, particularly those with a history of cigarette smoking, and affects more men than women. The diagnosis of IPF requires exclusion of other known causes of ILDs and the presence of a typical radiological pattern identified through high resolution computed tomography (HRCT). In the right clinical setting, it is possible to make the diagnosis of IPF by HRCT alone, obviating the need for surgical lung biopsy.
Treatment to slow down the progression of the disease may include nintedanib or pirfenidone.
The typical symptoms of UIP are progressive shortness of breath and cough for a period of months. In some patients, UIP is diagnosed only when a more acute disease supervenes and brings the patient to medical attention.
Patients typically have no symptoms until the third or fourth decade of life. In most cases, the disease is discovered incidentally on routine chest Xray. The most common symptoms include the following:
- dyspnea
- dry cough
- chest pain
- sporadic hemoptysis
- asthenia
- pneumothoraces
The cause of the scarring in UIP may be known (less commonly) or unknown (more commonly). Since the medical term for conditions of unknown cause is "idiopathic", the clinical term for UIP of unknown cause is idiopathic pulmonary fibrosis (IPF). Examples of known causes of UIP include systemic sclerosis/scleroderma, rheumatoid arthritis, asbestosis, and prolonged use of medications such as nitrofurantoin or amiodarone.
Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of lung diseases affecting the interstitium (the tissue and space around the air sacs of the lungs). It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage. But in interstitial lung disease, the repair process goes awry and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The term ILD is used to distinguish these diseases from obstructive airways diseases.
In children, several unique forms of ILD exist which are specific for the young age groups. The acronym chILD is used for this group of diseases and is derived from the English name, Children’s Interstitial Lung Diseases – chILD.
Prolonged ILD may result in pulmonary fibrosis, but this is not always the case. Idiopathic pulmonary fibrosis is interstitial lung disease for which no obvious cause can be identified (idiopathic), and is associated with typical findings both radiographic (basal and pleural based fibrosis with honeycombing) and pathologic (temporally and spatially heterogeneous fibrosis, histopathologic honeycombing and fibroblastic foci).
In 2013 interstitial lung disease affected 595,000 people globally. This resulted in 471,000 deaths.
Pulmonary edema, connective tissue diseases, asbestosis, lymphangitic carcinomatosis, lymphoma, lymphangioleiomyomatosis, drug-induced lung diseases
- Lymphadenopathy
Sarcoidosis, silicosis, berylliosis, lymphangitic carcinomatosis, lymphoma, lymphocytic interstitial pneumonia
In disorders that are intrinsic to the lung parenchyma, the underlying process is usually pulmonary fibrosis (scarring of the lung). As the disease progresses, the normal lung tissue is gradually replaced by scar tissue interspersed with pockets of air. This can lead to parts of the lung having a honeycomb-like appearance.
The symptoms of pulmonary hypertension include the following:
Less common signs/symptoms include non-productive cough and exercise-induced nausea and vomiting. Coughing up of blood may occur in some patients, particularly those with specific subtypes of pulmonary hypertension such as heritable pulmonary arterial hypertension, Eisenmenger syndrome and chronic thromboembolic pulmonary hypertension. Pulmonary venous hypertension typically presents with shortness of breath while lying flat or sleeping (orthopnea or paroxysmal nocturnal dyspnea), while pulmonary arterial hypertension (PAH) typically does not.
Other typical signs of pulmonary hypertension include an accentuated pulmonary component of the second heart sound, a right ventricular third heart sound, and parasternal heave indicating a hypertrophied right atrium. Signs of systemic congestion resulting from right-sided heart failure include jugular venous distension, ascites, and hepatojugular reflux. Evidence of tricuspid insufficiency and pulmonic regurgitation is also sought and, if present, is consistent with the presence of pulmonary hypertension.
Brown induration is fibrosis and hemosiderin pigmentation of the lungs due to long standing pulmonary congestion (chronic passive congestion).
Diagnosis of obstructive disease requires several factors depending on the exact disease being diagnosed. However one commonalty between them is an FEV1/FVC ratio less than 0.7, i.e. the inability to exhale 70% of their breath within one second.
Following is an overview of the main obstructive lung diseases. "Chronic obstructive pulmonary disease" is mainly a combination of chronic bronchitis and emphysema, but may be more or less overlapping with all conditions.
Restrictive lung diseases (or restrictive ventilatory defects) are a category of extrapulmonary, pleural, or parenchymal respiratory diseases that restrict lung expansion, resulting in a decreased lung volume, an increased work of breathing, and inadequate ventilation and/or oxygenation. Pulmonary function test demonstrates a decrease in the forced vital capacity.
Asthma is an obstructive lung disease where the bronchial tubes (airways) are extra sensitive (hyperresponsive). The airways become inflamed and produce excess mucus and the muscles around the airways tighten making the airways narrower. Asthma is usually triggered by breathing in things in the air such as dust or pollen that produce an allergic reaction. It may be triggered by other things such as an upper respiratory tract infection, cold air, exercise or smoke. Asthma is a common condition and affects over 300 million people around the world.
Asthma causes recurring episodes of wheezing, breathlessness, chest tightness, and coughing, particularly at night or in the early morning.
- Exercise-Induced Asthma — is common in asthmatics, especially after participation in outdoor activities in cold weather.
- Occupational Asthma — An estimated 2% to 5% of all asthma episodes may be caused by exposure to a specific sensitizing agent in the workplace.
- Nocturnal Asthma — is a characteristic problem in poorly controlled asthma and is reported by more than two thirds of sub-optimally treated patients.
A peak flow meter can record variations in the severity of asthma over time. Spirometry, a measurement of lung function, can provide an assessment of the severity, reversibility, and variability of airflow limitation, and help confirm the diagnosis of asthma.
According to the International Labour Office (ILO), PMF requires the presence of large opacity exceeding 1 cm (by x-ray). By pathology standards, the lesion in histologic section must exceed 2 cm to meet the definition of PMF. In PMF, lesions most commonly occupy the upper lung zone, and are usually bilateral. The development of PMF is usually associated with a restrictive ventilatory defect on pulmonary function testing. PMF can be mistaken for bronchogenic carcinoma and vice versa. PMF lesions tend to grow very slowly, so any rapid changes in size, or development of cavitation, should prompt a search for either alternative cause or secondary disease.
Most common:
- Chest Pain
- Cough
- Fever
- Shortness of breath
- Joint pain, stiffness, swelling
- Skin nodules
People may not present with all these symptoms or non at all.
The major signs of indium lung are pulmonary alveolar proteinosis and pulmonary fibrosis. Symptoms include dyspnea (shortness of breath), cough, and increased sputum production. Hemoptysis has also been seen in people with indium lung. Other symptoms seen in some but not all cases include digital clubbing, low DLCO (capacity to move oxygen from the alveoli into the blood), and lowered forced expiratory volume. Emphysema has been associated with indium lung, but may not be part of the syndrome.
Pulmonary alveolar microlithiasis (PAM) is a rare, inherited disorder of lung phosphate balance that is associated with small stone formation in the airspaces of the lung. Mutations in the gene "SLC34A2" result in loss of a key sodium, phosphate co-transporter (called Npt2b), known to be expressed in distal airway epithelial alveolar type II cells, as well as in the mammary gland, and to a lesser extent in intestine, kidney, skin, prostate and testes. As the disease progresses, the lung fields become progressively more dense (white) on the chest xray, and low oxygen level, lung inflammation and fibrosis, elevated pressures in the lung blood vessels, and respiratory failure ensue, usually in middle age. The clinical course of PAM can be highly variable, with some patients remaining asymptomatic for decades, and others progressing more rapidly. There is no effective treatment, and the mechanisms of stone formation, inflammation and scarring are not known.
May have no signs and symptoms or they may include:
- cough, but not prominent;
- chest pain (not common);
- breathing difficulty (fast and shallow);
- low oxygen saturation;
- pleural effusion (transudate type);
- cyanosis (late sign);
- increased heart rate.
It is a common misconception that atelectasis causes fever. A study of 100 post-op patients followed with serial chest X-rays and temperature measurements showed that the incidence of fever decreased as the incidence of atelectasis increased. A recent review article summarizing the available published evidence on the association between atelectasis and post-op fever concluded that there is no clinical evidence supporting this doctrine.
Neuroendocrine hyperplasia is a hyperplastic process that ultimately results in fibrosis of predominantly the pulmonary tree (the lungs). It is characterized by tachypnea, hypoxia, and retractions. There is no currently recognized treatment for the relentless progression of this disorder.
Lung disease results from clogging of the airways due to mucus build-up, decreased mucociliary clearance, and resulting inflammation. Inflammation and infection cause injury and structural changes to the lungs, leading to a variety of symptoms. In the early stages, incessant coughing, copious phlegm production, and decreased ability to exercise are common. Many of these symptoms occur when bacteria that normally inhabit the thick mucus grow out of control and cause pneumonia.
In later stages, changes in the architecture of the lung, such as pathology in the major airways (bronchiectasis), further exacerbate difficulties in breathing. Other signs include coughing up blood (hemoptysis), high blood pressure in the lung (pulmonary hypertension), heart failure, difficulties getting enough oxygen to the body (hypoxia), and respiratory failure requiring support with breathing masks, such as bilevel positive airway pressure machines or ventilators. "Staphylococcus aureus", "Haemophilus influenzae", and "Pseudomonas aeruginosa" are the three most common organisms causing lung infections in CF patients. In addition to typical bacterial infections, people with CF more commonly develop other types of lung disease. Among these is allergic bronchopulmonary aspergillosis, in which the body's response to the common fungus "Aspergillus fumigatus" causes worsening of breathing problems. Another is infection with "Mycobacterium avium" complex, a group of bacteria related to tuberculosis, which can cause lung damage and does not respond to common antibiotics.
Mucus in the paranasal sinuses is equally thick and may also cause blockage of the sinus passages, leading to infection. This may cause facial pain, fever, nasal drainage, and headaches. Individuals with CF may develop overgrowth of the nasal tissue (nasal polyps) due to inflammation from chronic sinus infections. Recurrent sinonasal polyps can occur in 10% to 25% of CF patients. These polyps can block the nasal passages and increase breathing difficulties.
Cardiorespiratory complications are the most common cause of death (about 80%) in patients at most CF centers in the United States.
Some people with bronchiectasis may have a cough productive of frequent green/yellow mucus (sputum), up to 240 ml (8 oz) daily. Bronchiectasis may also present with coughing up blood (hemoptysis) in the absence of sputum, called "dry bronchiectasis". Sputum production may also occur without coloration. People with bronchiectasis may have bad breath indicative of active infection. Frequent bronchial infections and breathlessness are two possible indicators of bronchiectasis.
Crepitations and expiratory rhonchi may be heard on auscultation. Nail clubbing is rare.
Pulmonary hypertension (PH or PHTN) is a condition of increased blood pressure within the arteries of the lungs. Symptoms include shortness of breath, syncope, tiredness, chest pain, swelling of the legs, and a fast heartbeat. The condition may make it difficult to exercise. Onset is typically gradual.
The cause is often unknown. Risk factors include a family history, prior blood clots in the lungs, HIV/AIDS, sickle cell disease, cocaine use, COPD, sleep apnea, living at high altitudes, and problems with the mitral valve. The underlying mechanism typically involves inflammation of the arteries in the lungs. Diagnosis involves first ruling out other potential causes.
There is no cure. Treatment depends on the type of disease. A number of supportive measures such as oxygen therapy, diuretics, and medications to inhibit clotting may be used. Medications specifically for the condition include epoprostenol, treprostinil, iloprost, bosentan, ambrisentan, macitentan, and sildenafil. A lung transplant may be an option in certain cases.
While the exact frequency of the condition is unknown, it is estimated that about 1,000 new cases occur a year in the United States. Females are more often affected than males. Onset is typically between 20 and 60 years of age. It was first identified by Ernst von Romberg in 1891.
Progressive Massive Fibrosis (PMF), characterized by the development of large conglomerate masses of dense fibrosis (usually in the upper lung zones), can complicate silicosis and coal worker's pneumoconiosis. Conglomerate masses may also occur in other pneumoconioses, such as talcosis, berylliosis (CBD), kaolin pneumoconiosis, and pneumoconiosis from carbon compounds, such as carbon black, graphite, and oil shale. Conglomerate masses can also develop in sarcoidosis, but usually near the hilae and with surrounding paracitricial emphysema.
The disease arises firstly through the deposition of silica or coal dust (or other dust) within the lung, and then through the body's immunological reactions to the dust.