Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Chest pain is a major indication of coronary ischemia. If chest pain occurs while exercising, or during sex, but it doesn't persist after rest, it may be coronary ischemia, or what is called, "angina". Some people characterize the pain they feel as though an elephant is sitting on their chest.
Other typical symptoms include diaphoresis which is sweaty palms, and clammy skin, nausea or vomiting, or shortness of breath. Chest pain radiating down the left arm is also a symptom of coronary ischemia and the pain can also be radiating directly to the back in some instances.
The symptoms of coronary ischemia can last for a short period of time. The other symptoms that last for a longer period of time may suggest a myocardial infarction.
Symptoms of coronary ischemia can be classified as typical or atypical.
Signs and symptoms of ischemic cardiomyopathy include sudden fatigue, shortness of breath, dizziness and palpitations.
Myocardial infarction (MI) refers to tissue death (infarction) of the heart muscle (myocardium). It is a type of acute coronary syndrome, which describes a sudden or short-term change in symptoms related to blood flow to the heart. Unlike other causes of acute coronary syndromes, such as unstable angina, a myocardial infarction occurs when there is cell death, as measured by a blood test for biomarkers (the cardiac protein troponin or the cardiac enzyme CK-MB). When there is evidence of an MI, it may be classified as an ST elevation myocardial infarction (STEMI) or Non-ST elevation myocardial infarction (NSTEMI) based on the results of an ECG.
The phrase "heart attack" is often used non-specifically to refer to a myocardial infarction and to sudden cardiac death. An MI is different from—but can cause—cardiac arrest, where the heart is not contracting at all or so poorly that all vital organs cease to function, thus causing death. It is also distinct from heart failure, in which the pumping action of the heart is impaired. However, an MI may lead to heart failure.
Chest pain is the most common symptom of acute myocardial infarction and is often described as a sensation of tightness, pressure, or squeezing. Pain radiates most often to the left arm, but may also radiate to the lower jaw, neck, right arm, back, and upper abdomen. The pain most suggestive of an acute MI, with the highest likelihood ratio, is pain radiating to the right arm and shoulder. Similarly, chest pain similar to a previous heart attack is also suggestive. The pain associated with MI is usually diffuse, does not change with position, and lasts for more than 20 minutes. Levine's sign, in which a person localizes the chest pain by clenching one or both fists over their sternum, has classically been thought to be predictive of cardiac chest pain, although a prospective observational study showed it had a poor positive predictive value. Pain that responds to nitroglycerin does not indicate the presence or absence of a myocardial infarction.
The pathophysiology of unstable angina is controversial. Until recently, unstable angina was assumed to be angina pectoris caused by disruption of an atherosclerotic plaque with partial thrombosis and possibly embolization or vasospasm leading to myocardial ischemia. However, sensitive troponin assays reveal rise of cardiac troponin in the bloodstream with episodes of even mild myocardial ischemia. Since unstable angina is assumed to occur in the setting of acute myocardial ischemia without troponin release, the concept of unstable angina is being questioned with some calling for retiring the term altogether.
Also known as 'effort angina', this refers to the classic type of angina related to myocardial ischemia. A typical presentation of stable angina is that of chest discomfort and associated symptoms precipitated by some activity (running, walking, etc.) with minimal or non-existent symptoms at rest or after administration of sublingual nitroglycerin. Symptoms typically abate several minutes after activity and recur when activity resumes. In this way, stable angina may be thought of as being similar to intermittent claudication symptoms. Other recognized precipitants of stable angina include cold weather, heavy meals, and emotional stress.
Unstable angina (UA) (also ""crescendo angina""; this is a form of acute coronary syndrome) is defined as angina pectoris that changes or worsens.
It has at least one of these three features:
1. it occurs at rest (or with minimal exertion), usually lasting more than 10 minutes
2. it is severe and of new onset (i.e., within the prior 4–6 weeks)
3. it occurs with a crescendo pattern (i.e., distinctly more severe, prolonged, or frequent than before).
UA may occur unpredictably at rest, which may be a serious indicator of an impending heart attack. What differentiates stable angina from unstable angina (other than symptoms) is the pathophysiology of the atherosclerosis. The pathophysiology of unstable angina is the reduction of coronary flow due to transient platelet aggregation on apparently normal endothelium, coronary artery spasms, or coronary thrombosis. The process starts with atherosclerosis, progresses through inflammation to yield an active unstable plaque, which undergoes thrombosis and results in acute myocardial ischemia, which, if not reversed, results in cell necrosis (infarction). Studies show that 64% of all unstable anginas occur between 22:00 and 08:00 when patients are at rest.
In stable angina, the developing atheroma is protected with a fibrous cap. This cap may rupture in unstable angina, allowing blood clots to precipitate and further decrease the area of the coronary vessel's lumen. This explains why, in many cases, unstable angina develops independently of activity.
Unstable angina (UA) is a type of angina pectoris that is irregular. It is also classified as a type of acute coronary syndrome (ACS).
It can be difficult to distinguish unstable angina from non-ST elevation (non-Q wave) myocardial infarction (NSTEMI). They differ primarily in whether the ischemia is severe enough to cause sufficient damage to the heart's muscular cells to release detectable quantities of a marker of injury (typically troponin T or troponin I). Unstable angina is considered to be present in patients with ischemic symptoms suggestive of an ACS and no elevation in troponin, with or without ECG changes indicative of ischemia (e.g., ST segment depression or transient elevation or new T wave inversion). Since an elevation in troponin may not be detectable for up to 12 hours after presentation, UA and NSTEMI are frequently indistinguishable at initial evaluation.
The risk of PVF during acute myocardial infarction is related to the amount of ST elevation, the presence of hypokalemia, the absence of pre-infarction angina, the size of the infarction, and the presence of a blocked left coronary artery. Other risk factors could include younger age, male gender, and history of sudden cardiac death in first degree relatives.
Approximately 10% of all myocardial infarctions lead to PVF. The incidence peaks between 20 and 50 minutes after the start of the MI. 2/3 of events occur before medical attendance, and of these medically unattended events, 2/3 occur after more than 30 minutes of warning symptoms.
Chest pain that occurs regularly with activity, after eating, or at other predictable times is termed stable angina and is associated with narrowings of the arteries of the heart.
Angina that changes in intensity, character or frequency is termed unstable. Unstable angina may precede myocardial infarction. In adults who go to the emergency department with an unclear cause of pain, about 30% have pain due to coronary artery disease.
Ischemic cardiomyopathy is a type of cardiomyopathy caused by a narrowing of the coronary arteries which supply blood to the heart. Typically, patients with ischemic cardiomyopathy have a history of acute myocardial infarction, however, it may occur in patients with coronary artery disease, but without a past history of acute myocardial infarction. This cardiomyopathy is one of the leading causes of sudden cardiac death.
A myocardial infarction may compromise the function of the heart as a pump for the circulation, a state called heart failure. There are different types of heart failure; left- or right-sided (or bilateral) heart failure may occur depending on the affected part of the heart, and it is a low-output type of failure. If one of the heart valves is affected, this may cause dysfunction, such as mitral regurgitation in the case of left-sided coronary occlusion that disrupts the blood supply of the papillary muscles. The incidence of heart failure is particularly high in patients with diabetes and requires special management strategies.
In cardiology, stunned myocardium is a state when some section of the myocardium (corresponding to area of a major coronary occlusion) shows a form of contractile abnormality. This is a segmental dysfunction which persists for a variable period of time, about two weeks, even after ischemia has been relieved (by for instance angioplasty or coronary artery bypass surgery). In this situation, while myocardial blood flow (MBF) returns to normal, function is still depressed for a variable period of time.
Myocardial stunning is the reversible reduction of function of heart contraction after reperfusion not accounted for by tissue damage or reduced blood flow.
After total ischemia occurs, the myocardium switches immediately from aerobic glycolysis to anaerobic glycolysis resulting in the reduced ability to produce high energy phosphates such as ATP and Creatinine Phosphate. At this point, the lack of the energy and lactate accumulation results in cessation of contraction within 60 seconds of ischemia (i.e. Vessel Occlusion). Subsequent to this is a period of "myocardial stunning," in which reversible ischemic damage is taking place. At approximately 30 minutes after the onset of total ischemia the damage becomes irreversible, thereby ending the phase of myocardial stunning.
Clinical situations of stunned myocardium are:
- acute myocardial infarction (AMI)
- after percutaneous transluminal coronary angioplasty (PTCA)
- after cardiac surgery
- 'neurogenic' stunned myocardium following an acute cerebrovascular event such as a subarachnoid hemorrhage
The symptoms are often very similar to those of myocardial infarction (heart attack), with the most common being persistent chest pain.
Myocardial infarction complications may occur immediately following a heart attack (in the acute phase), or may need time to develop (a chronic problem). After an infarction, an obvious complication is a second infarction, which may occur in the domain of another atherosclerotic coronary artery, or in the same zone if there are any live cells left in the infarct.
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), refers to a group of diseases which includes stable angina, unstable angina, myocardial infarction, and sudden cardiac death. It is within the group of cardiovascular diseases of which it is the most common type. A common symptom is chest pain or discomfort which may travel into the shoulder, arm, back, neck, or jaw. Occasionally it may feel like heartburn. Usually symptoms occur with exercise or emotional stress, last less than a few minutes, and improve with rest. Shortness of breath may also occur and sometimes no symptoms are present. Occasionally, the first sign is a heart attack. Other complications include heart failure or an abnormal heartbeat.
Risk factors include high blood pressure, smoking, diabetes, lack of exercise, obesity, high blood cholesterol, poor diet, depression, and excessive alcohol. The underlying mechanism involves reduction of blood flow and oxygen to the heart muscle due to atherosclerosis of the arteries of the heart. A number of tests may help with diagnoses including: electrocardiogram, cardiac stress testing, coronary computed tomographic angiography, and coronary angiogram, among others.
Ways to reduce CAD risk include eating a healthy diet, regularly exercising, maintaining a healthy weight, and not smoking. Medications for diabetes, high cholesterol, or high blood pressure are sometimes used. There is limited evidence for screening people who are at low risk and do not have symptoms. Treatment involves the same measures as prevention. Additional medications such as antiplatelets (including aspirin), beta blockers, or nitroglycerin may be recommended. Procedures such as percutaneous coronary intervention (PCI) or coronary artery bypass surgery (CABG) may be used in severe disease. In those with stable CAD it is unclear if PCI or CABG in addition to the other treatments improves life expectancy or decreases heart attack risk.
In 2015 CAD affected 110 million people and resulted in 8.9 million deaths. It makes up 15.9% of all deaths making it the most common cause of death globally. The risk of death from CAD for a given age has decreased between 1980 and 2010, especially in developed countries. The number of cases of CAD for a given age has also decreased between 1990 and 2010. In the United States in 2010 about 20% of those over 65 had CAD, while it was present in 7% of those 45 to 64, and 1.3% of those 18 to 45. Rates are higher among men than women of a given age.
Symptoms of cerebral infarction are determined by the parts of the brain affected. If the infarct is located in primary motor cortex, contralateral hemiparesis is said to occur. With brainstem localization, brainstem syndromes are typical: Wallenberg's syndrome, Weber's syndrome, Millard-Gubler syndrome, Benedikt syndrome or others.
Infarctions will result in weakness and loss of sensation on the opposite side of the body. Physical examination of the head area will reveal abnormal pupil dilation, light reaction and lack of eye movement on opposite side. If the infarction occurs on the left side brain, speech will be slurred. Reflexes may be aggravated as well.
Symptoms may begin quickly or slowly depending on the size of the embolus and how much it blocks the blood flow. Symptoms of embolisation in an organ vary with the organ involved but commonly include:
- Pain in the involved body part
- Temporarily decreased organ function
Later symptoms are closely related to infarction of the affected tissue. This may cause permanently decreased organ function.
For example, symptoms of myocardial infarction mainly include chest pain, dyspnea, diaphoresis (an excessive form of sweating), weakness, light-headedness, nausea, vomiting, and palpitations.
Symptoms of limb infarction include coldness, decreased or no pulse beyond the site of blockage, pain, muscle spasm, numbness and tingling, pallor and muscle weakness, possibly to the grade of paralysis in the affected limb.
Symptoms of myocardial rupture are recurrent or persistent chest pain, syncope, and distension of jugular vein. Sudden death caused by a myocardial rupture is sometimes preceded by no symptoms.
Arterial emboli often occur in the legs and feet. Some may occur in the brain, causing a stroke, or in the heart, causing a heart attack. Less common sites include the kidneys, intestines, and eyes.
A spontaneous coronary artery dissection (SCAD) (occasionally coronary artery dissection) is a rare, sometimes fatal traumatic condition, with eighty percent of cases affecting women. One of the coronary arteries develops a tear, causing blood to flow between the layers which forces them apart. Studies of the disease place the mortality rate at around 70%.
SCAD is a primary cause of myocardial infarction (MI) in young, fit, healthy women (and some men) with no obvious risk factors. These can often occur during late pregnancy, postpartum and peri-menopausal periods.
Left ventricular thrombus is a blood clot (thrombus) in the left ventricle of the heart. LVT is a common complication of acute myocardial infarction (AMI). Typically the clot is a mural thrombus, meaning it is on the wall of the ventricle. The primary risk of LVT is the occurrence of cardiac embolism, in which the thrombus detaches from the ventricular wall and travels through the circulation and blocks blood vessels. Blockage can be especially damaging in the heart or brain (stroke).
There are various classification systems for a cerebral infarction.
- The Oxford Community Stroke Project classification (OCSP, also known as the Bamford or Oxford classification) relies primarily on the initial symptoms. Based on the extent of the symptoms, the stroke episode is classified as total anterior circulation infarct (TACI), partial anterior circulation infarct (PACI), lacunar infarct (LACI) or posterior circulation infarct (POCI). These four entities predict the extent of the stroke, the area of the brain affected, the underlying cause, and the prognosis.
- The TOAST (Trial of Org 10172 in Acute Stroke Treatment) classification is based on clinical symptoms as well as results of further investigations; on this basis, a stroke is classified as being due to (1) thrombosis or embolism due to atherosclerosis of a large artery, (2) embolism of cardiac origin, (3) occlusion of a small blood vessel, (4) other determined cause, (5) undetermined cause (two possible causes, no cause identified, or incomplete investigation).