Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A-PION most commonly affects Caucasian women, with an average age of 73. At onset vision loss is unilateral, but without treatment it rapidly progresses to involve both eyes. Vision loss is usually severe, ranging from counting fingers to no light perception. Associated symptoms are jaw pain exacerbated by chewing, scalp tenderness, shoulder and hip pain, headache and fatigue.
Vision loss is usually apparent upon waking from general anesthesia. Signs observable to a bystander include long surgery duration and facial swelling. Vision loss is usually bilateral and severe, ranging from counting fingers to no light perception.
NAION typically presents suddenly and upon awakening. The patient notes seeing poorly in one eye. Vision in that eye is obscured by a dark shadow, often involving just the upper or lower half of vision, usually the area towards the nose. There is no pain. In approximately 6 months following the infarct visual acuity improves by 3 or more lines of vision on the Snellen Chart (the chart with smaller letters on each lower line) in 42.7% of patients. In addition, vision had worsened by 3 lines or more in 12.4% of patients. Second eye involvement occurs in approximately 15% to 20% of patients with NAION within 5 years. Fortunately, it may not be terribly devastating as the visual acuity may remain only moderately impaired. Furthermore, most cases of NAION involve the loss of a hemifield (either the upper or lower half of the visual field, but not both). A few cases of NAION involve almost total loss of vision.
Since arteritic AION is similar in presentation to non-arteritic AION, patients over the age of 50 diagnosed with NAION must be evaluated to exclude AAION (symptoms: painful jaw muscle spasms, scalp tenderness, unintentional weight loss, fatigue, myalgias and loss of appetite). Furthermore, NAION patients over the age of 75 should often be blood tested regardless.
Those with ocular ischemic syndrome are typically between the ages of 50 and 80 (patients over 65) ; twice as many men as women are affected. More than 90% of those presenting with the condition have vision loss. Patients may report a dull, radiating ache over the eye and eyebrow. Those with ocular ischemic syndrome may also present with a history of other systemic diseases including arterial hypertension, diabetes mellitus, coronary artery disease, previous stroke, and hemodialysis.
The condition presents with visual loss secondary to hypoperfusion of the eye structures. The patient presents with intractable pain or ocular angina. On dilated examination, there may be blot retinal hemorrhages along with dilated and beaded retinal veins. The ocular perfusion pressure is decreased.
The corneal layers show edema and striae. There is mild anterior uveitis. A cherry-red spot may be seen in the macula, along with cotton-wool spots elsewhere, due to retinal nerve fiber layer hemorrhages. The retinal arteries may show spontaneous pulsations.
Anterior ischemic optic neuropathy (AION) is a medical condition involving loss of vision caused by damage to the optic nerve as a result of insufficient blood supply (ischemia). This form of ischemic optic neuropathy is generally divided into two types: arteritic AION (or AAION), where the loss of vision is an effect of an inflammatory disease of arteries in the head called temporal arteritis, and non-arteritic AION (abbreviated as NAION, or sometimes simply as AION) due to non-inflammatory disease of small blood vessels.
Ischemic optic neuropathy (ION) is the loss of structure and function of a portion of the optic nerve due to obstruction of blood flow to the nerve (i.e. ischemia). Ischemic forms of optic neuropathy are typically classified as either anterior ischemic optic neuropathy or posterior ischemic optic neuropathy according to the part of the optic nerve that is affected. People affected will often complain of a loss of visual acuity and a visual field, the latter of which is usually in the superior or inferior field.
When ION occurs in patients below the age of 50 years old, other causes should be considered. Such as juvenile diabetes mellitus, antiphospholipid antibody-associated clotting disorders, collagen-vascular disease, and migraines. Rarely, complications of intraocular surgery or acute blood loss may cause an ischemic event in the optic nerve.
Anterior ION presents with sudden, painless visual loss developing over hours to days. Examination findings usually include decreased visual acuity, a visual field defect, color vision loss, a relative afferent pupillary defect, and a swollen optic nerve head. Posterior ION occurs arteritic, nonarteritic, and surgical settings. It is characterized by acute vision loss without initial disc edema, but with subsequent optic disc atrophy.
Although there is no recognized treatment that can reverse the visual loss. Upon recent reports, optic nerve health decompression may be beneficial for a select group of patients with a gradual decline in vision due to ION.
There are several constitutional symptoms of temporal arteritis that may aid in diagnosis of AAION such as jaw claudication (spasms of the jaw muscle), scalp tenderness, unintentional weight loss, fatigue, myalgias and loss of appetite. However, many cases are asymptomatic. There are also elevations in three blood tests that help identify AAION: erythrocyte sedimentation rate (ESR), C reactive protein (CRP) and platelet count (thrombocytosis). A related rheumatic disease called polymyalgia rheumatica has a 15 percent incidence of giant cell arteritis.
If carotid occlusive disease results in ophthalmic artery occlusion, general ocular ischemia may result in retinal neovascularization, rubeosis iridis, cells and flare, iris necrosis, and cataract. The condition leads to neovascularization in various eye tissues due to the ischemia. The eye pressure may become high due to associated neovascular glaucoma. An ischemic optic neuropathy may eventually occur.
Neurological causes include:
- Optic neuritis
- Compressive optic neuropathies
- Papilledema: "The underlying mechanism for visual obscurations in all of these patients appear to be transient ischemia of the optic nerve head consequent to increased tissue pressure. Axonal swelling, intraneural masses, and increased influx of interstitial fluid may all contribute to increases in tissue pressure in the optic nerve head. The consequent reduction in perfusion pressure renders the small, low-pressure vessels that supply the optic nerve head vulnerable to compromise. Brief fluctuations in intracranial or systemic blood pressure may then result in transient loss of function in the eyes." Generally, this transient visual loss is also associated with a headache and optic disk swelling.
- Multiple Sclerosis can cause amaurosis fugax due to a unilateral conduction block, which is a result of demyelination and inflammation of the optic nerve, and "...possibly by defects in synaptic transmission and putative circulating blocking factors."
- Migraine
- Pseudotumor cerebri
- Intracranial tumor
- Psychogenic
Arteritic anterior ischemic optic neuropathy (AAION or arteritic AION) is the cause of vision loss that occurs in temporal arteritis (aka giant cell arteritis). Temporal arteritis is an inflammatory disease of medium-sized blood vessels that happens especially with advancing age. AAION occurs in about 15-20 percent of patients with temporal arteritis. Damage to the blood vessels supplying the optic nerves leads to insufficient blood supply (ischemia) to the nerve and subsequent optic nerve fiber death. Most cases of AAION result in nearly complete vision loss first to one eye. If the temporal arteritis is left untreated, the fellow eye will likely suffer vision loss as well within 1–2 weeks. Arteritic AION falls under the general category of anterior ischemic optic neuropathy, which also includes non-arteritic AION. AION is considered an eye emergency, immediate treatment is essential to rescue remaining vision.
An exhaustive review article published in March 2009 described the latest information on arteritic and non-arteritic ischemic optic neuropathy, both anterior (A-AION and NA-AION) and posterior (A-PION, NA-PION, and surgical).
Ocular causes include:
- Iritis
- Keratitis
- Blepharitis
- Optic disc drusen
- Posterior vitreous detachment
- Closed-angle glaucoma
- Transient elevation of intraocular pressure
- Intraocular hemorrhage
- Coloboma
- Myopia
- Orbital hemangioma
- Orbital osteoma
- Keratoconjunctivitis sicca
Tumors, infections, and inflammatory processes can cause lesions within the orbit and, less commonly, the optic canal. These lesions may compress the optic nerve, resulting optic disc swelling and progressive visual loss. Implicated orbital disorders include optic gliomas, meningiomas, hemangiomas, lymphangiomas, dermoid cysts, carcinoma, lymphoma, multiple myeloma, inflammatory orbital pseudotumor, and thyroid ophthalmopathy. Patients often have bulging out of the eye (proptosis) with mild color deficits and almost normal vision with disc swelling.
Most patients with hypertensive retinopathy have no symptoms. However, some may report decreased or blurred vision, and headaches.
A nutritional optic neuropathy may be present in a patient with obvious evidence of under-nutrition (weight loss and wasting). Months of depletion are usually necessary to deplete body stores of most nutrients. Undernourished patients often suffer from many vitamin and nutrient deficiencies and have low serum protein levels. However, the optic neuropathy associated with pernicious anemia and vitamin B deficiency can even be seen in well-nourished individuals. Gastric bypass surgery may also cause a vitamin B deficiency from poor absorption.
Patients who suffer from nutritional optic neuropathy may notice that colors are not as vivid or bright as before and that the color red is washed out. This normally occurs in both eyes at the same time and is not associated with any eye pain. They might initially notice a blur or fog, followed by a drop in vision. While vision loss may be rapid, progression to blindness is unusual. These patients tend to have blind spots in the center of their vision with preserved peripheral vision. In most cases, the pupils continue to respond normally to light.
Nutritional deficiencies affect the whole body, so pain or loss of sensation in the arms and legs (peripheral neuropathy) is often seen in patients with nutritional optic neuropathies. There was an epidemic of nutritional optic neuropathy among afflicted Allied prisoners of war of the Japanese during World War II. After four months of food deprivation, the prisoners of war developed vision loss in both eyes that appeared suddenly. They also had pain in their extremities and hearing loss. There is an endemic tropical neuropathy in Nigeria that may be due to a nutritional deficiency, but this has not been proven.
Signs of damage to the retina caused by hypertension include:
- Arteriolar changes, such as generalized arteriolar narrowing, focal arteriolar narrowing, arteriovenous nicking, changes in the arteriolar wall (arteriosclerosis) and abnormalities at points where arterioles and venules cross. Manifestations of these changes include "Copper wire arterioles" where the central light reflex occupies most of the width of the arteriole and "Silver wire arterioles" where the central light reflex occupies all of the width of the arteriole, and "arterio-venular (AV) nicking" or "AV nipping", due to venous constriction and banking.
- advanced retinopathy lesions, such as microaneurysms, blot hemorrhages and/or flame hemorrhages, ischemic changes (e.g. "cotton wool spots"), hard exudates and in severe cases swelling of the optic disc (optic disc edema), a ring of exudates around the retina called a "macular star" and visual acuity loss, typically due to macular involvement.
Mild signs of hypertensive retinopathy can be seen quite frequently in normal people (3–14% of adult individuals aged ≥40 years), even without hypertension. Hypertensive retinopathy is commonly considered a diagnostic feature of a hypertensive emergency although it is not invariably present.
Optic nerve damage is progressive and insidious. Eventually 75% of patients will develop some peripheral field defects. These can include nasal step defects, enlarged blind spots, arcuate scotomas, sectoral field loss and altitudinal defects. Clinical symptoms correlate to visibility of the drusen. Central vision loss is a rare complication of bleeding from peripapillar choroidal neovascular membranes. Anterior ischemic optic neuropathy (AION) is a potential complication.
Vision loss in toxic and nutritional optic neuropathy is bilateral, symmetric, painless, gradual, and progressive. Dyschromatopsia, a change in color vision, is often the first symptom. Some patients notice that certain colors, particularly red, are less bright or vivid; others have a general loss of color perception. Loss of visual acuity may start with a blur or haze at the point of fixation, followed by a progressive decline. The degree of vision loss can extend to total blindness, but a loss beyond 20/400 is rare, except in the case of methanol ingestion. Peripheral vision is usually spared since the pattern of loss typically involves a central or cecocentral scotoma, a visual field defect at or surrounding the point of fixation. This pattern can be revealed via visual field testing.
Upon examination, the pupils usually demonstrate a normal response to light and near stimulation. In those who are practically blind, the pupils will be dilated with a weak or absent response to light. The optic disc may appear normal, swollen, or hyperemic in early stages. With hyperemia, disc hemorrhages may also be present. Continued damage to the optic nerve results in the development of optic atrophy, classically seen as temporal pallor of the optic disc.
Major symptoms are sudden loss of vision (partial or complete), sudden blurred or "foggy" vision, and pain on movement of the affected eye. Early symptoms that require investigation include symptoms from multiple sclerosis (twitching, lack of coordination, slurred speech, frequent episodes of partial vision loss or blurred vision), episodes of "disturbed/blackened" rather than blurry indicate moderate stage and require immediate medical attention to prevent further loss of vision. Other early symptoms are reduced night vision, photophobia and red eyes. Many patients with optic neuritis may lose some of their color vision in the affected eye (especially red), with colors appearing subtly washed out compared to the other eye. Patients may also experience difficulties judging movement in depth which can be particular troublesome during driving or sport (Pulfrich effect). Likewise transient worsening of vision with increase of body temperature (Uhthoff's phenomenon) and glare disability are a frequent complaint. However, several case studies in children have demonstrated the absence of pain in more than half of cases (approximately 60%) in their pediatric study population, with the most common symptom reported simply as "blurriness." Other remarkable differences between the presentation of adult optic neuritis as compared to pediatric cases include more often unilateral optic neuritis in adults, while children much predominantly present with bilateral involvement.
On medical examination the head of the optic nerve can easily be visualized by a slit lamp with high plus or by using direct ophthalmoscopy; however, frequently there is no abnormal appearance of the nerve head in optic neuritis (in cases of retrobulbar optic neuritis), though it may be swollen in some patients (anterior papillitis or more extensive optic neuritis). In many cases, only one eye is affected and patients may not be aware of the loss of color vision until they are asked to close or cover the healthy eye.
Normal tension glaucoma (NTG) is an eye disease, a neuropathy of the optic nerve, that shows all the characteristics of "traditional" glaucoma except one: the elevated intraocular pressure (IOP) - the classic hallmark of glaucoma - is missing. Normal tension glaucoma is in many cases closely associated with general issues of blood circulation and of organ perfusion like arterial hypotension, metabolic syndrome, and Flammer syndrome.
In many patients, normal tension glaucoma is common in individuals with a generalized reduced perfusion of organs and certain body tissues. A low blood pressure - whether consistently low or with sudden pressure drops - is associated with NTG as are conditions like Flammer syndrome and obstructive sleep apnea. Flammer syndrome has been attributed to increase the likelihood of ganglion cell damage in normal tension glaucoma patients with disc hemorrhages as a characteristic clinical sign. Besides race (Japanese) and low blood pressure, the female gender is also a risk factor.
In most patients, optic disc drusen are an incidental finding. It is important to differentiate them from other conditions that present with optic disc elevation, especially papilledema, which could imply raised intracranial pressure or tumors. True papilledema may present with exudates or cotton-wool spots, unlike ODD. The optic disc margins are characteristically irregular in ODD but not blurred as there is no swelling of the retinal nerve fibers. Spontaneous venous pulsations are present in about 80 percent of patients with ODD, but absent in cases of true disc edema. Other causes of disc elevation clinicians must exclude may be: hyaloid traction, epipapillary glial tissue, myelinated nerve fibres, scleral infiltration, vitreopapillary traction and high hyperopia. Disorders associated with disc elevation include: Alagille syndrome, Down syndrome, Kenny-Caffey syndrome, Leber Hereditary Optic Neuropathy and linear nevus sebaceous syndrome.
The generalized, common presentation for this broad and inclusive group of diseases is painless, bilateral loss of visual acuity and pallor of the optic disc accompanied with varying degrees of dyschromatopsia and central/cecocentral scatomas. On examination the papillary response may be sluggish to light, one would not expect to find an afferent papillary defect. This is because optic neuropathies are often bilateral and symmetric. The optic disc may be mildly hyperemic with small splinter hemorrhages on or around the disc. Optic atrophy may early on be non-existent and only later become mild. In later stages the optic atrophy is severe and this indicates less opportunity for recovery.
The duration of onset can vary between immediate and insidious, owing to the specific etiology. Two key features may be helpful in distinguishing acquired from inherited optic neuropathies: absence of a family history and simultaneous involvement of both eyes; the former more commonly characterized by these two features.
Many times, an optic pit is asymptomatic and is just an incidental finding on examination of the eye by a physician. However, some patients may present with the symptoms of a posterior vitreous detachment or serous retinal detachment. This is because optic pits are associated with these disorders and are even speculated to be the actual cause of these disorders when they arise in patients with optic pits (see "Associated Retinal Changes" below for a more in-depth discussion on this theory). The most common visual field defects include an enlarged blind spot and a scotoma. Visual acuity is typically not affected by the pit but may get worse if serous detachment of the macula occurs. Metamorphopsia (distorted vision) may then result.
Optic pits were first described in 1882 as dark gray depressions in the optic disc. They may, however, appear white or yellowish instead. They can also range greatly in size (e.g. some can be minuscule while others may be large enough as to occupy most of optic disc surface). Optic pits are associated with other abnormalities of the optic nerve including large optic nerve size, large inferior colobomas of the optic disc, and colobomas of the retina. The optic disc originates from the optic cup when the optic vesicle invaginates and forms an embryonic fissure (or groove). Optic pits may develop due to failure of the superior end of the embryonic fissure to close completely.
Diabetic neuropathy affects all peripheral nerves including sensory neurons, motor neurons, but rarely affects the autonomic nervous system. Therefore, diabetic neuropathy can affect all organs and systems, as all are innervated. There are several distinct syndromes based on the organ systems and members affected, but these are by no means exclusive. A patient can have sensorimotor and autonomic neuropathy or any other combination. Signs and symptoms vary depending on the nerve(s) affected and may include symptoms other than those listed. Symptoms usually develop gradually over years.
Symptoms may include the following:
- Trouble with balance
- Numbness and tingling of extremities
- Dysesthesia (abnormal sensation to a body part)
- Diarrhea
- Erectile dysfunction
- Urinary incontinence (loss of bladder control)
- Facial, mouth and eyelid drooping
- Vision changes
- Dizziness
- Muscle weakness
- Difficulty swallowing
- Speech impairment
- Fasciculation (muscle contractions)
- Anorgasmia
- Retrograde ejaculation (in males)
- Burning or electric pain
Optic neuritis is a demyelinating inflammation of the optic nerve. It is also known as optic papillitis (when the head of the optic nerve is involved) and retrobulbar neuritis (when the posterior part of the nerve is involved). It is most often associated with multiple sclerosis, and it may lead to complete or partial loss of vision in one or both eyes.
Partial, transient vision loss (lasting less than one hour) can be an indication of early onset multiple sclerosis. Other possible diagnoses include: diabetes mellitus, low phosphorus levels, or hyperkalaemia.