Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Patients diagnosed with porencephaly display a variety of symptoms, from mild to severe effects on the patient. Patients with severe cases of porencephaly suffer epileptic seizures and developmental delays, whereas patients with a mild case of porencephaly display little to no seizures and healthy neurodevelopment. Infants with extensive defects show symptoms of the disorder shortly after birth, and the diagnosis is usually made before the age of 1.
The following text lists out common signs and symptoms of porencephaly in affected individuals along with a short description of certain terminologies.
Porencephaly is a rare disorder. The exact prevalence of porencephaly is not known; however, it has been reported that 6.8% of patients with cerebral palsy or 68% of patients with epilepsy and congenital vascular hemiparesis have porencephaly. Porencephaly has a number of different, often unknown, causes including absence of brain development and destruction of brain tissue. With limited research, the most commonly regarded cause of porencephaly is disturbances in blood circulation, ultimately leading to brain damage. However, a number of different and multiple factors such as abnormal brain development or damage to the brain tissue can also affect the development of porencephaly.
The following text lists out potential risk factors of developing porencephaly and porencephalic cysts and cavities along with brief description of certain terminologies.
Cysts or cavities can occur anywhere within the brain and the locations of these cysts depend highly on the patient. Cysts can develop in the frontal lobe, parietal lobe, forebrain, hindbrain, temporal lobe, or virtually anywhere in the cerebral hemisphere.
Schizencephaly can be distinguished from porencephaly by the fact that in schizencephaly the fluid-filled component, if present, is entirely lined by heterotopic grey matter while a porencephalic cyst is lined mostly by white matter. Individuals with clefts in both hemispheres, or bilateral clefts, are often developmentally delayed and have delayed speech and language skills and corticospinal dysfunction. Individuals with smaller, unilateral clefts (clefts in one hemisphere) may be weak or paralyzed on one side of the body and may have average or near-average intelligence. Patients with schizencephaly may also have varying degrees of microcephaly, Intellectual disability, hemiparesis (weakness or paralysis affecting one side of the body), or quadriparesis (weakness or paralysis affecting all four extremities), and may have reduced muscle tone (hypotonia). Most patients have seizures, and some may have hydrocephalus.
Usually the cerebellum and brain stem are formed normally, although in some cases the cerebellum may also be absent. An infant with hydranencephaly may appear normal at birth or may have some distortion of the skull and upper facial features due to fluid pressure inside the skull. The infant's head size and spontaneous reflexes such as sucking, swallowing, crying, and moving the arms and legs may all seem normal, depending on the severity of the condition. However, after a few weeks the infant sometimes becomes irritable and has increased muscle tone (hypertonia). After several months of life, seizures and hydrocephalus may develop, if they did not exist at birth. Other symptoms may include visual impairment, lack of growth, deafness, blindness, spastic quadriparesis (paralysis), and intellectual deficits.
Some infants may have additional abnormalities at birth including seizures, myoclonus (involuntary sudden, rapid jerks), limited thermoregulation abilities, and respiratory problems.
Still other infants display no obvious symptoms at birth, going many months without a confirmed diagnosis of hydranencephaly. In some cases a severe hydrocephalus, or other cephalic condition, is misdiagnosed.
Symptoms vary according to the abnormality, but often feature poor muscle tone and motor function, seizures, developmental delays, mental retardation, failure to grow and thrive, difficulties with feeding, swelling in the extremities, and a smaller than normal head. Most infants with an NMD appear normal, but some disorders have characteristic facial or skull features that can be recognized by a neurologist.
Schizencephaly () is a rare birth defect characterized by abnormal clefts lined with grey matter that form the ependyma of the cerebral ventricles to the pia mater. These clefts can occur bilaterally or unilaterally. Common clinical features of this malformation include epilepsy, motor deficits, and psychomotor retardation.
Hydranencephaly or hydrancephaly is a condition in which the brain's cerebral hemispheres are absent to varying degrees and the remaining cranial cavity is filled with cerebrospinal fluid.
Hydranencephaly (or hydrancephaly) is a type of cephalic disorder.
These disorders are congenital conditions that derive from either damage to, or abnormal development of, the fetal nervous system in the earliest stages of development in utero. Cephalic is the medical term for “head” or “head end of body.” These conditions do not have any definitive identifiable cause factor; instead generally attributed to a variety of hereditary or genetic conditions, but also by environmental factors such as maternal infection, pharmaceutical intake, or even exposure to high levels of radiation.
This should not be confused with hydrocephalus, which is an accumulation of excess cerebrospinal fluid in the ventricles of the brain.
In hemihydranencephaly, only half of the cranial cavity is filled with fluid.
Neuronal migration disorder (NMD) refers to a heterogenous group of disorders that, it is supposed, share the same etiopathological mechanism: a variable degree of disruption in the migration of neuroblasts during neurogenesis. The neuronal migration disorders are cerebral dysgenesis, brain malformations caused by primary alterations during neurogenesis; on the other hand, brain malformations are highly diverse and refer to any insult to the brain during its formation and maturation due to intrinsic or extrinsic causes that ultimately will alter the normal brain anatomy. However, there is some controversy in the terminology because virtually any malformation will involve neuroblast migration, either primarily or secondarily.
Cephalic disorders (from the Greek word "κεφάλι", meaning "head") are congenital conditions that stem from damage to, or abnormal development of, the budding nervous system. Cephalic means "head" or "head end of the body."
Cephalic disorders are not necessarily caused by a single factor, but may be influenced by hereditary or genetic conditions, nutritional deficiencies, or by environmental exposures during pregnancy, such as medication taken by the mother, maternal infection, or exposure to radiation. Some cephalic disorders occur when the cranial sutures (the fibrous joints that connect the bones of the skull) join prematurely. Most cephalic disorders are caused by a disturbance that occurs very early in the development of the fetal nervous system.
The human nervous system develops from a small, specialized plate of cells on the surface of the embryo. Early in development, this plate of cells forms the neural tube, a narrow sheath that closes between the third and fourth weeks of pregnancy to form the brain and spinal cord of the embryo. Four main processes are responsible for the development of the nervous system: cell proliferation, the process in which nerve cells divide to form new generations of cells; cell migration, the process in which nerve cells move from their place of origin to the place where they will remain for life; cell differentiation, the process during which cells acquire individual characteristics; and cell death, a natural process in which cells die.
Damage to the developing nervous system is a major cause of chronic, disabling disorders and, sometimes, death in infants, children, and even adults. The degree to which damage to the developing nervous system harms the mind and body varies enormously. Many disabilities are mild enough to allow those afflicted to eventually function independently in society. Others are not. Some infants, children, and adults die, others remain totally disabled, and an even larger population is partially disabled, functioning well below normal capacity throughout life.
The National Institute of Neurological Disorders and Stroke (NINDS) is currently "conducting and supporting research on normal and abnormal brain and nervous system development."
Different people are affected very differently by this disease. The main manifestation is fluid-filled cysts that grow on the brain and can cause damage that varies depending on their location and severity. Symptoms may manifest early in infancy, or may manifest as late as adulthood. Symptoms associated with autosomal dominant porencephaly type I include migraines, hemiplegia or hemiparesis, seizures, cognitive impairment, strokes, dystonia, speech disorders, involuntary muscle spasms, visual field defects, and hydrocephalus.
Autosomal dominant porencephaly type I is a rare type of porencephaly that causes cysts to grow on the brain and damage to small blood vessels, which can lead to cognitive impairment, migraines, seizures, and hemiplegia or hemiparesis.
Where known, the ICD-10 code is listed below.
- Anencephaly (Q00.0)
- Colpocephaly (ICD10 unknown)
- Holoprosencephaly (Q04.2)
- Ethmocephaly (ICD10 unknown)
- Hydranencephaly (Q04.3)
- Iniencephaly (Q00.2)
- Lissencephaly (Q04.3)
- Megalencephaly (Q04.5)
- Microcephaly (Q02)
- Porencephaly (Q04.6)
- Schizencephaly (Q04.6)
Athetoid cerebral palsy or dyskinetic cerebral palsy (sometimes abbreviated ADCP) is primarily associated with damage to the basal ganglia in the form of lesions that occur during brain development due to bilirubin encephalopathy and hypoxic-ischemic brain injury. ADCP is characterized by both hypertonia and hypotonia, due to the affected individual's inability to control muscle tone. Clinical diagnosis of ADCP typically occurs within 18 months of birth and is primarily based upon motor function and neuroimaging techniques.
Athetoid dyskinetic cerebral palsy is a non-spastic, extrapyramidal form of cerebral palsy. Dyskinetic cerebral palsy can be divided into two different groups; choreoathetoid and dystonic. Choreo-athetotic CP is characterized by involuntary movements most predominantly found in the face and extremities. Dystonic ADCP is characterized by slow, strong contractions, which may occur locally or encompass the whole body.
Mixed cerebral palsy has symptoms of athetoid, ataxic and spastic CP appearing simultaneously, each to varying degrees, and both with and without symptoms of each. Mixed CP is the most difficult to treat as it is extremely heterogeneous and sometimes unpredictable in its symptoms and development over the lifespan.
Oculocerebrocutaneous syndrome (also known as Delleman–Oorthuys syndrome) is a condition characterized by orbital cysts, microphthalmia, porencephaly, agenesis of the corpus callosum, and facial skin tags.
When structural impairments are not observable or do not exist, neurological impairments are assessed. In the context of FASD, neurological impairments are caused by prenatal alcohol exposure which causes general neurological damage to the central nervous system (CNS), the peripheral nervous system, or the autonomic nervous system. A determination of a neurological problem must be made by a trained physician, and must not be due to a postnatal insult, such as a high fever, concussion, traumatic brain injury, etc.
All four diagnostic systems show virtual agreement on their criteria for CNS damage at the neurological level, and evidence of a CNS neurological impairment due to prenatal alcohol exposure will result in a diagnosis of FAS or pFAS, and functional impairments are highly likely.
Neurological problems are expressed as either hard signs, or diagnosable disorders, such as epilepsy or other seizure disorders, or soft signs. Soft signs are broader, nonspecific neurological impairments, or symptoms, such as impaired fine motor skills, neurosensory hearing loss, poor gait, clumsiness, poor eye-hand coordination. Many soft signs have norm-referenced criteria, while others are determined through clinical judgment. "Clinical judgment" is only as good as the clinician, and soft signs should be assessed by either a pediatric neurologist, a pediatric neuropsychologist, or both.
Other conditions may commonly co-occur with FAS, stemming from prenatal alcohol exposure. However, these conditions are considered alcohol-related birth defects and not diagnostic criteria for FAS.
- Heart: A heart murmur that frequently disappears by one year of age. Ventricular septal defect most commonly seen, followed by an atrial septal defect.
- Bones: Joint anomalies including abnormal position and function, altered palmar crease patterns, small distal phalanges, and small fifth fingernails.
- Kidneys: Horseshoe, aplastic, dysplastic, or hypoplastic kidneys.
- Eyes: Strabismus, optic nerve hypoplasia (which may cause light sensitivity, decreased visual acuity, or involuntary eye movements).
- Occasional problems: ptosis of the eyelid, microophthalmia, cleft lip with or without a cleft palate, webbed neck, short neck, tetralogy of Fallot, coarctation of the aorta, spina bifida, and hydrocephalus.