Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In right atrial isomerism, both atria of the heart are morphological right atria leading to associated abnormalities in the pulmonary venous system. In addition, individuals with right atrial isomerism develop asplenia, a midline liver, malrotation of the small intestine and the presence of two morphologic right lungs. Individuals with left atrial isomerism, by comparison, have two morphologic left atria, polysplenia, intestinal malrotation and two morphologic left lungs.
The majority of cases present at the time of birth or within a few days or weeks. Presenting signs and symptoms of the congenital heart defect may include cyanosis, breathlessness, lethargy and poor feeding.
There are frequent associated congenital anomalies all related to deviations in the development of anatomical asymmetries in early embryonic stages. These conditions considered together are called "polysplenia syndrome".
Associated conditions include heterotaxy syndrome, intestinal malrotation, situs inversus, biliary atresia, and several cardiac malformations. Associated cardiac conditions include dextrocardia, atrial situs ambiguus, ventricular inversion, and VA concordance with left posterior aorta.
Although present, the multiple small spleens are often ineffective; this is termed functional asplenia.
Polysplenia or Chaudhrey's disease is a congenital disease manifested by multiple small accessory spleens, rather than a single, full-sized, normal spleen. Polysplenia sometimes occurs alone, but it is often accompanied by other developmental abnormalities. Conditions associated with polysplenia include gastrointestinal abnormalities, such as intestinal malrotation or biliary atresia, as well as cardiac abnormalities, such as dextrocardia.
There are a variety of clinical manifestations of situs ambiguous. Acute symptoms can be due to both cardiac and non-cardiac defects. Cyanosis or blue skin coloration, primarily affecting the lips and fingernails, can indicate a systemic or circulatory issue. Poor feeding, failure to thrive, and rapid shallow breathing may also be observed due to poor circulation. Upon examination, arrhythmia and heart murmur may raise further suspicion of a cardiac abnormality. Non-cardiac symptoms include impairments of the liver and gastrointestinal tract. Biliary atresia, or inflammation and destruction of the bile ducts, may lead to jaundice. Vomiting and swelling of the abdominal region are features that suggest improper positioning of the intestines. Poor positioning of the intestine also makes it more prone to blockage, which can result in numerous chronic health issues. Asplenia and polysplenia are also possible features of heterotaxy syndrome.
Due to abnormal cardiac development, patients with situs ambiguous usually develop right atrial isomerism consisting of 2 bilaterally paired right atria, or left atrial isomerism consisting of 2 bilaterally paired left atria. Clinical features and symptoms can vary dependent upon assignment of left versus right atrial isomerism. In either instance, the apex of the heart will be poorly positioned, which should alert a clinician of the likelihood of atrial isomerism. It is estimated that 5-10% of isomeric patients have mesocardia, in which the heart is positioned at the center of the thorax, 25-50% have dextrocardia, in which the apex of the heart is pointed toward the right side of the thorax, and 50 - 70% have levocardia, in which the apex of the heart is pointed toward the left side of the thorax.
Asplenia with cardiovascular anomalies, also known as Ivemark syndrome and right atrial isomerism, is an example of a heterotaxy syndrome. These uncommon congenital disorders are characterized by defects in the heart, spleen and paired organs such as the lungs and kidneys. Another name is "asplenia-cardiovascular defect-heterotaxy".
Right atrial isomerism is named for its discoverer, Swedish pathologist Biörn Ivemark.
Situs ambiguus or situs ambiguous, also known as heterotaxy or heterotaxia, is a rare congenital defect in which the major visceral organs are distributed abnormally within the chest and abdomen. Heterotaxy in general refers to any defect of left-right laterality and arrangement of the visceral organs. This does not include the congenital defect situs inversus, which results when arrangement of the organs in the abdomen and chest are mirrored, so the positions are opposite the normal placement. Situs inversus is the mirror image of situs solitus, which is normal asymmetric distribution of the abdominothoracic visceral organs. Patients with situs ambiguous are considered isomeric in that they have organs with two right-sides or two left-sides, most commonly observed in relation to the atria of the heart.
Individuals with situs inversus or situs solitus do not experience fatal dysfunction of their organ systems, as general anatomy and morphology of the abdominothoracic organ-vessel systems are conserved. Due to abnormal arrangement of organs in situs ambiguous, orientation across the left-right axis of the body is disrupted early in fetal development, resulting in severely flawed cardiac development and function in 50–80% of cases. They also experience complications with systemic and pulmonary blood vessels, significant morbidity, and sometimes death. All patients with situs ambiguus lack lateralization and symmetry of organs in the abdominal and thoracic cavities and are clinically considered to have a form of heterotaxy syndrome.
Heterotaxy syndrome with atrial isomerism occurs in 1 out of every 10,000 live births and is associated with approximately 3% of congenital heart disease cases. Additional estimation of incidence and prevalence of isomerism proves difficult due to failure to diagnose and underestimation of the disease by clinicians. Furthermore, right isomerism is much more easily recognized than left isomerism, contributing to the failure to diagnose.
Situs ambiguous is a growing field of research with findings dating back to 1973.
Cor triatriatum (or triatrial heart) is a congenital heart defect where the left atrium (cor triatriatum sinistrum) or right atrium (cor triatriatum dextrum) is subdivided by a thin membrane, resulting in three atrial chambers (hence the name).
Cor triatriatum represents 0.1% of all congenital cardiac malformations and may be associated with other cardiac defects in as many as 50% of cases. The membrane may be complete or may contain one or more fenestrations of varying size.
Cor triatrium sinistrum is more common. In this defect there is typically a proximal chamber that receives the pulmonic veins and a distal (true) chamber located more anteriorly where it empties into the mitral valve. The membrane that separates the atrium into two parts varies significantly in size and shape. It may appear similar to a diaphragm or be funnel-shaped, bandlike, entirely intact (imperforate) or contain one or more openings (fenestrations) ranging from small, restrictive-type to large and widely open.
In the pediatric population, this anomaly may be associated with major congenital cardiac lesions such as tetralogy of Fallot, double outlet right ventricle, coarctation of the aorta, partial anomalous pulmonary venous connection, persistent left superior vena cava with unroofed coronary sinus, ventricular septal defect, atrioventricular septal (endocardial cushion) defect, and common atrioventricular canal. Rarely, asplenia or polysplenia has been reported in these patients.
In the adult, cor triatriatum is frequently an isolated finding.
Cor triatriatum dextrum is extremely rare and results from the complete persistence of the right sinus valve of the embryonic heart. The membrane divides the right atrium into a proximal (upper) and a distal (lower) chamber. The upper chamber receives the venous blood from both vena cavae and the lower chamber is in contact with the tricuspid valve and the right atrial appendage.
The natural history of this defect depends on the size of the communicating orifice between the upper and lower atrial chambers. If the communicating orifice is small, the patient is critically ill and may succumb at a young age (usually during infancy) to congestive heart failure and pulmonary edema. If the connection is larger, patients may present in childhood or young adulthood with a clinical picture similar to that of mitral stenosis. Cor triatriatum may also be an incidental finding when it is nonobstructive.
The disorder can be treated surgically by removing the membrane dividing the atrium.
Initially, the symptoms of biliary atresia are indistinguishable from those of neonatal jaundice, a usually harmless condition commonly seen in infants. Distinctive symptoms of biliary atresia are usually evident between one and six weeks after birth. Infants and children with biliary atresia develop progressive cholestasis, a condition in which bile is unable to leave the liver and builds up inside of it. When the liver is unable to excrete bilirubin through the bile ducts in the form of bile, bilirubin begins to accumulate in the blood, causing symptoms. These symptoms include yellowing of the skin, itchiness, poor absorption of nutrients (causing delays in growth), pale stools, dark urine, and a swollen abdomen. Eventually, cirrhosis with portal hypertension will develop. If left untreated, biliary atresia can lead to liver failure. Unlike other forms of jaundice, however, biliary-atresia-related cholestasis mostly does not result in kernicterus, a form of brain damage resulting from liver dysfunction. This is because in biliary atresia, the liver, although diseased, is still able to conjugate bilirubin, and conjugated bilirubin is unable to cross the blood–brain barrier.
The differential diagnoses are extensive and include: Alagille syndrome, alpha-1-antitrypsin deficiency, Byler disease (progressive familial intrahepatic cholestasis), Caroli disease, choledochal cyst, cholestasis, congenital cytomegalovirus disease, congenital herpes simplex virus infection, congenital rubella, congenital syphilis, congenital toxoplasmosis, cystic fibrosis, galactosemia, idiopathic neonatal hepatitis, lipid storage disorders, neonatal hemochromatosis, and total parenteral nutrition-associated cholestasis.
Primary ciliary dyskinesia (PCD), also called immotile ciliary syndrome or Kartagener syndrome, is a rare, ciliopathic, autosomal recessive genetic disorder that causes defects in the action of cilia lining the respiratory tract (lower and upper, sinuses, Eustachian tube, middle ear), fallopian tube, and flagella of sperm cells. The phrase "immotile ciliary syndrome" is no longer favored as the cilia do have movement, but are merely inefficient or unsynchronized.
Respiratory epithelial motile cilia, which resemble microscopic "hairs" (although structurally and biologically unrelated to hair), are complex organelles that beat synchronously in the respiratory tract, moving mucus toward the throat. Normally, cilia beat 7 to 22 times per second, and any impairment can result in poor mucociliary clearance, with subsequent upper and lower respiratory infection. Cilia also are involved in other biological processes (such as nitric oxide production), which are currently the subject of dozens of research efforts. As the functions of cilia become better understood, the understanding of PCD should be expected to advance.
The main consequence of impaired ciliary function is reduced or absent mucus clearance from the lungs, and susceptibility to chronic recurrent respiratory infections, including sinusitis, bronchitis, pneumonia, and otitis media. Progressive damage to the respiratory system is common, including progressive bronchiectasis beginning in early childhood, and sinus disease (sometimes becoming severe in adults). However, diagnosis is often missed early in life despite the characteristic signs and symptoms. In males, immotility of sperm can lead to infertility, although conception remains possible through the use of in vitro fertilization and, as well as this, there have been reported cases where sperm were able to move. Trials have also shown that there is a marked reduction in fertility in female sufferers of Kartagener's Syndrome due to dysfunction of the oviductal cilia.
Many affected individuals experience hearing loss and show symptoms of otitis media which demonstrate variable responsiveness to the insertion of myringotomy tubes or grommets. Some patients have a poor sense of smell, which is believed to accompany high mucus production in the sinuses (although others report normal - or even acute - sensitivity to smell and taste). Clinical progression of the disease is variable, with lung transplantation required in severe cases. Susceptibility to infections can be drastically reduced by an early diagnosis. Treatment with various chest physiotherapy techniques has been observed to reduce the incidence of lung infection and to slow the progression of bronchiectasis dramatically. Aggressive treatment of sinus disease beginning at an early age is believed to slow long-term sinus damage (although this has not yet been adequately documented). Aggressive measures to enhance clearance of mucus, prevent respiratory infections, and treat bacterial superinfections have been observed to slow lung-disease progression. Although the true incidence of the disease is unknown, it is estimated to be 1 in 32,000,
although the actual incidence may be as high as 1 in 15,000.