Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Mononeuritis multiplex, occasionally termed polyneuritis multiplex, is simultaneous or sequential involvement of individual noncontiguous nerve trunks, either partially or completely, evolving over days to years and typically presenting with acute or subacute loss of sensory and motor function of individual nerves. The pattern of involvement is asymmetric, however, as the disease progresses, deficit(s) becomes more confluent and symmetrical, making it difficult to differentiate from polyneuropathy. Therefore, attention to the pattern of early symptoms is important.
Mononeuritis multiplex also may cause pain, which is characterized as deep, aching pain that is worse at night and frequently in the lower back, hip, or leg. In people with diabetes mellitus, mononeuritis multiplex typically is encountered as acute, unilateral, and severe thigh pain followed by anterior muscle weakness and loss of knee reflex.
Electrodiagnostic medicine studies will show multifocal sensory motor axonal neuropathy.
It is caused by, or associated with, several medical conditions:
Neuritis is a general term for inflammation of a nerve or the general inflammation of the peripheral nervous system. Symptoms depend on the nerves involved, but may include pain, paresthesia (pins-and-needles), paresis (weakness), hypoesthesia (numbness), anesthesia, paralysis, wasting, and disappearance of the reflexes.
Causes of neuritis include:
Among the signs/symptoms of polyneuropathy, which can be divided (into sensory and hereditary) and are consistent with the following:
- "Sensory polyneuropathy" - ataxia, numbness, muscle wasting and paraesthesiae.
- "Hereditary polyneuropathy" - scoliosis and hammer toes
Polyneuropathies may be classified in different ways, such as by "cause", by "presentation", or by "classes" of polyneuropathy, in terms of which part of the nerve cell is affected mainly: the axon, the myelin sheath, or the cell body.
- Distal axonopathy, is the result of interrupted function of the peripheral nerves. It is the most common response of neurons to metabolic or toxic disturbances, and may be caused by metabolic diseases such as diabetes, kidney failure, connective tissue disease, deficiency syndromes such as malnutrition and alcoholism, or the effects of toxins or drugs such as chemotherapy. They may be divided according to the type of axon affected (large-fiber, small-fiber, or both), the most distal portions of axons are usually the first to degenerate, and axonal atrophy advances slowly toward the nerve's cell body, however if the cause is removed, regeneration is possible, although the prognosis depends on the duration and severity of the stimulus. People with distal axonopathies usually present with sensorimotor disturbances such as amyotrophic lateral sclerosis
- Myelinopathy, is due to a loss of myelin or of the Schwann cells. This demyelination slows down or completely blocks the conduction of action potentials through the axon of the nerve cell(neuraplaxia). The most common cause is acute inflammatory demyelinating polyneuropathy AIDP, the most common form of Guillain–Barré syndrome(although other causes include chronic inflammatory demyelinating polyneuropathy )
- Neuronopathy is the result of issues in the peripheral nervous system (PNS) neurons. They may be caused by motor neurone diseases, sensory neuronopathies, toxins, or autonomic dysfunction. Neurotoxins such as chemotherapy agents may cause neuronopathies.
The signs and symptoms of autonomic neuropathy include the following:
- Urinary bladder conditions: bladder incontinence or urinary retention
- Gastrointestinal tract: dysphagia, abdominal pain, nausea, vomiting, malabsorption, fecal incontinence, gastroparesis, diarrhoea, constipation
- Cardiovascular system: disturbances of heart rate (tachycardia, bradycardia), orthostatic hypotension, inadequate increase of heart rate on exertion
- Respiratory system: impairments in the signals associated with regulation of breathing and gas exchange (central sleep apnea, hypopnea, bradypnea).
- Nervous system: pupillary defect, exaggerated hippus, dizziness or lightheadedness.
- Other areas: hypoglycemia unawareness, genital impotence, sweat disturbances, sicca (dryness).
Autonomic neuropathy (also AN or AAN) is a form of polyneuropathy that affects the non-voluntary, non-sensory nervous system (i.e., the autonomic nervous system), affecting mostly the internal organs such as the bladder muscles, the cardiovascular system, the digestive tract, and the genital organs. These nerves are not under a person's conscious control and function automatically. Autonomic nerve fibers form large collections in the thorax, abdomen, and pelvis outside the spinal cord. They have connections with the spinal cord and ultimately the brain, however. Most commonly autonomic neuropathy is seen in persons with long-standing diabetes mellitus type 1 and 2. In most—but not all—cases, autonomic neuropathy occurs alongside other forms of neuropathy, such as sensory neuropathy.
Autonomic neuropathy is one cause of malfunction of the autonomic nervous system (referred to as dysautonomia), but not the only one; some conditions affecting the brain or spinal cord also may cause autonomic dysfunction, such as multiple system atrophy, and therefore, may cause similar symptoms to autonomic neuropathy.
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired immune-mediated inflammatory disorder of the peripheral nervous system. The disorder is sometimes called chronic relapsing polyneuropathy (CRP) or chronic inflammatory demyelinating polyradiculoneuropathy (because it involves the nerve roots). CIDP is closely related to Guillain–Barré syndrome and it is considered the chronic counterpart of that acute disease. Its symptoms are also similar to progressive inflammatory neuropathy. An asymmetrical variant of CIDP is known as Lewis-Sumner Syndrome.
Chronic inflammatory demyelinating polyneuropathy, also known as Vidaurri's disease, is believed to be due to immune cells, which normally protect the body from foreign infection, incorrectly attacking the nerves in the body instead. As a result, the affected nerves fail to respond, or respond only weakly, and on occasion, inordinately, to stimuli, causing numbing, tingling, pain, progressive muscle weakness, loss of deep tendon reflexes (areflexia), fatigue, and abnormal sensations. The likelihood of progression of the disease is high.
CIDP is under-recognized and under-treated due to its heterogeneous presentation (both clinical and electrophysiological) and the limitations of clinical, serologic, and electrophysiologic diagnostic criteria. Despite these limitations, early diagnosis and treatment is important in preventing irreversible axonal loss and improving functional recovery.
Lack of awareness and treatment of CIDP is also due to limitations of clinical trials. Although there are stringent research criteria for selecting patients to clinical trials, there are no generally agreed-on clinical diagnostic criteria for CIDP due to its different presentations in symptoms and objective data. Application of the present research criteria to routine clinical practice often miss the diagnosis in a majority of patients, and patients are often left untreated despite progression of their disease.
People with CIP/CIM have diffuse, symmetric, flaccid muscle weakness. CIP/CIM typically develops in the setting of a critical illness and immobilization, so patients with CIP/CIM are often receiving treatment in the intensive care unit (ICU).
Weakness (motor deficits) occurs in generalized fashion, rather than beginning in one region of the body and spreading. Limb and respiratory (diaphragm) muscles are especially affected. The muscles of the face are usually spared, but in rare cases, the eye muscles may be weakened, leading to ophthalmoplegia.
Respiratory difficulties can be caused by atrophy of the muscles between the ribs (intercostals), atrophy of the diaphragm muscle, and degeneration of the nerve that stimulates the diaphragm (phrenic nerve). This can prolong the time the wean a person off of a breathing machine (mechanical ventilation) by as much as 7 – 13 days.
Deep tendon reflexes may be lost or diminished, and there may be bilateral symmetric flaccid paralysis of the arms and legs. The nervous system manifestations are typically limited to peripheral nerves, as the central nervous system is usually unaffected.
A number of terms are used to describe critical illness polyneuropathy, partially because there is often neuropathy and myopathy in the same person, and nerve and muscle degeneration are difficult to distinguish from each other in this condition. Terms used for the condition include: critical illness polyneuromyopathy, critical illness neuromyopathy, and critical illness myopathy and neuropathy (CRIMYNE). Bolton's neuropathy is an older term, which is no longer used.
Onset occurs in infancy or early childhood, usually before 3 years of age. Progression is slow until the teenage years at which point it may accelerate, resulting in severe disability.
Symptoms are usually more severe and rapidly progressive than in the other more common Charcot–Marie–Tooth diseases. Some patients may never walk and solely use wheelchairs by the end of their first decade, while others may need only a cane (walking stick) or similar support through life.
Dejerine–Sottas disease is characterized by moderate to severe lower and upper extremity weakness and loss of sensation, which occur mainly in the lower legs, forearms, feet and hands. Loss of muscle mass and reduced muscle tone can occur as the disease progresses. Other symptoms may include pain in the extremities, curvature of the spine, clawed hands, foot deformities, ataxia, peripheral areflexia, and slow acquisition of motor skills in childhood. Symptoms that are less common can include limitation of eye movements, other eye problems such as nystagmus or anisocoria, or mild hearing loss.
The demyelinating diseases of the peripheral nervous system include:
- Guillain–Barré syndrome and its chronic counterpart, chronic inflammatory demyelinating polyneuropathy
- Anti-MAG peripheral neuropathy
- Charcot–Marie–Tooth disease and its counterpart Hereditary neuropathy with liability to pressure palsy
- Copper deficiency associated conditions (peripheral neuropathy, myelopathy, and rarely optic neuropathy)
- Progressive inflammatory neuropathy
Signs and symptoms of proximal diabetic neuropathy depend on the region of the plexus which is affected. The first symptom is usually pain in the buttocks, hips, thighs or legs. This pain most commonly affects one side of the body and can either start gradually or come on suddenly. This is often followed by variable weakness in the proximal muscles of the lower limbs. These symptoms, although often beginning on one side, can also spread . Weakness in proximal diabetic neuropathy is caused by denervation of the specific muscles innervated by regions of the plexus affected and can thus these muscles may start exhibiting fasciculations.
Note that diabetic amyotrophy is a condition caused by diabetes mellitus, but separate from the more common condition of polyneuropathy.
Proximal diabetic neuropathy, more commonly known as diabetic amyotrophy, is a nerve disorder that results as a complication of diabetes mellitus. It can affect the thighs, hips, buttocks or lower legs. Proximal diabetic neuropathy is a peripheral nerve disease (diabetic neuropathy) characterized by muscle wasting or weakness, pain, or changes in sensation/numbness of the leg. Diabetic neuropathy is an uncommon complication of diabetes. It is a type of lumbosacral plexopathy, or adverse condition affecting the lumbosacral plexus.
There are a number of ways that diabetes damages the nerves, all of which seem to be related to increased blood sugar levels over a long period of time. Proximal diabetic neuropathy is one of four types of diabetic neuropathy.
Proximal diabetic neuropathy can occur in type 2 and type 1 diabetes mellitus patients however, it is most commonly found in type 2 diabetics. Proximal neuropathy is the second most common type of diabetic neuropathy and can be resolved with time and treatment.
Symptoms of CMT usually begin in early childhood or early adulthood, but can begin later. Some people do not experience symptoms until their early thirties or forties. Usually, the initial symptom is foot drop early in the course of the disease. This can also cause hammer toe, where the toes are always curled. Wasting of muscle tissue of the lower parts of the legs may give rise to a "stork leg" or "inverted champagne bottle" appearance. Weakness in the hands and forearms occurs in many people as the disease progresses.
Loss of touch sensation in the feet, ankles and legs, as well as in the hands, wrists and arms occur with various types of the disease. Early and late onset forms occur with 'on and off' painful spasmodic muscular contractions that can be disabling when the disease activates. High-arched feet (pes cavus) or flat-arched feet (pes planus) are classically associated with the disorder. Sensory and proprioceptive nerves in the hands and feet are often damaged, while unmyelinated pain nerves are left intact. Overuse of an affected hand or limb can activate symptoms including numbness, spasm, and painful cramping.
Symptoms and progression of the disease can vary. Involuntary grinding of teeth as well as squinting are prevalent and often go unnoticed by the person affected. Breathing can be affected in some; so can hearing, vision, as well as the neck and shoulder muscles. Scoliosis is common, causing hunching and loss of height. Hip sockets can be malformed. Gastrointestinal problems can be part of CMT, as can difficulty chewing, swallowing, and speaking (due to atrophy of vocal cords). A tremor can develop as muscles waste. Pregnancy has been known to exacerbate CMT, as well as severe emotional stress. Patients with CMT must avoid periods of prolonged immobility such as when recovering from a secondary injury as prolonged periods of limited mobility can drastically accelerate symptoms of CMT.
Pain due to postural changes, skeletal deformations, muscle fatigue and cramping is fairly common in people with CMT. It can be mitigated or treated by physical therapies, surgeries, and corrective or assistive devices. Analgesic medications may also be needed if other therapies do not provide relief from pain. Neuropathic pain is often a symptom of CMT, though, like other symptoms of CMT, its presence and severity varies from case to case. For some people, pain can be significant to severe and interfere with daily life activities. However, pain is not experienced by all people with CMT. When neuropathic pain is present as a symptom of CMT, it is comparable to that seen in other peripheral neuropathies, as well as postherpetic neuralgia and complex regional pain syndrome, among other diseases.
The demyelinating disorders of the central nervous system include:
- Myelinoclastic disorders, in which myelin is attacked by external substances
- standard multiple sclerosis, Devic's disease and other disorders with immune system involvement called inflammatory demyelinating diseases.
- Leukodystrophic disorders, in which myelin is not properly produced:
- CNS neuropathies like those produced by vitamin B12 deficiency
- Central pontine myelinolysis
- Myelopathies like tabes dorsalis (syphilitic myelopathy)
- leukoencephalopathies like progressive multifocal leukoencephalopathy
- Leukodystrophies
These disorders are normally associated also with the conditions optic neuritis and transverse myelitis, which are inflammatory conditions, because inflammation and demyelination are frequently associated. Some of them are idiopathic and for some others the cause has been found, like some cases of neuromyelitis optica.
Diabetic neuropathy affects all peripheral nerves including sensory neurons, motor neurons, but rarely affects the autonomic nervous system. Therefore, diabetic neuropathy can affect all organs and systems, as all are innervated. There are several distinct syndromes based on the organ systems and members affected, but these are by no means exclusive. A patient can have sensorimotor and autonomic neuropathy or any other combination. Signs and symptoms vary depending on the nerve(s) affected and may include symptoms other than those listed. Symptoms usually develop gradually over years.
Symptoms may include the following:
- Trouble with balance
- Numbness and tingling of extremities
- Dysesthesia (abnormal sensation to a body part)
- Diarrhea
- Erectile dysfunction
- Urinary incontinence (loss of bladder control)
- Facial, mouth and eyelid drooping
- Vision changes
- Dizziness
- Muscle weakness
- Difficulty swallowing
- Speech impairment
- Fasciculation (muscle contractions)
- Anorgasmia
- Retrograde ejaculation (in males)
- Burning or electric pain
Dejerine–Sottas disease, also known as Dejerine–Sottas syndrome, Dejerine–Sottas neuropathy, progressive hypertrophic interstitial polyneuropathy of childhood and onion bulb neuropathy (and, "hereditary motor and sensory polyneuropathy type III" and "Charcot–Marie–Tooth disease type 3"), is a hereditary neurological disorder characterised by damage to the peripheral nerves and resulting progressive muscle wasting. The condition is caused by mutations in a various genes and currently has no known cure.
The disorder is named for Joseph Jules Dejerine and Jules Sottas, French neurologists who first described it.
Common manifestations of sensory issues include numbness or painful sensations in the arms and legs, abnormal sensations like “pins and needles,” and heat intolerance. Pain experienced by individuals depends on the severity of the polyneuropathy. It may be dull and constant in some individuals while being sharp and lancinating in others. In many subjects, tenderness is seen upon the palpitation of muscles in the feet and legs. Certain people may also feel cramping sensations in the muscles affected and others say there is a burning sensation in their feet and calves.
Sensory symptoms are gradually followed by motor symptoms. Motor symptoms may include muscle cramps and weakness, erectile dysfunction in men, problems urinating, constipation, and diarrhea. Individuals also may experience muscle wasting and decreased or absent deep tendon reflexes. Some people may experience frequent falls and gait unsteadiness due to ataxia. This ataxia may be caused by cerebellar degeneration, sensory ataxia, or distal muscle weakness. Over time, alcoholic polyneuropathy may also cause difficulty swallowing (dysphagia), speech impairment (disarthria), muscle spasms, and muscle atrophy.
In addition to alcoholic polyneuropathy, the individual may also show other related disorders such as Wernicke-Korsakoff syndrome and cerebellar degeneration that result from alcoholism-related nutritional disorders.
Diabetic neuropathy encompasses a series of different neuropathic syndromes which can be schematized in the following way:
- Focal and multifocal neuropathies:
- Mononeuropathy
- Amyotrophy, radiculopathy
- Multiple lesions "mononeuritis multiplex"
- Entrapment (e.g. median, ulnar, peroneal)
- Symmetrical neuropathies:
- Acute sensory
- Autonomic
- Distal symmetrical polyneuropathy (DSPN), the diabetic type of which is also known as diabetic peripheral neuropathy (DPN) (most common presentation)
The aggregation of one precursor protein leads to peripheral neuropathy and/or autonomic nervous system dysfunction. These proteins include: transthyretin (ATTR, the most commonly implicated protein), apolipoprotein A1, and gelsolin.
Due to the rareness of the other types of familial neuropathies, transthyretin amyloidogenesis-associated polyneuropathy should probably be considered first.
"FAP-I" and "FAP-II" are associated with transthyretin. (Senile systemic amyloidosis [abbreviated "SSA"] is also associated with transthyretin aggregation.)
"FAP-III" is also known as "Iowa-type", and involves apolipoprotein A1.
"FAP-IV" is also known as "Finnish-type", and involves gelsolin.
Fibrinogen, apolipoprotein A1, and lysozyme are associated with a closely related condition, familial visceral amyloidosis.
Charcot–Marie–Tooth disease (CMT) is one of the hereditary motor and sensory neuropathies, a group of varied inherited disorders of the peripheral nervous system characterized by progressive loss of muscle tissue and touch sensation across various parts of the body. Currently incurable, this disease is the most commonly inherited neurological disorder, and affects approximately 1 in 2,500 people. CMT was previously classified as a subtype of muscular dystrophy.
Tingling, numbness, and/ or a burning sensation in the area of the body affected by the corresponding nerve. These experiences may occur directly following insult or may occur several hours or even days afterwards. Note that pain is not a common symptom of nerve entrapment.
The familial amyloid neuropathies (or familial amyloidotic neuropathies, neuropathic heredofamilial amyloidosis, familial amyloid polyneuropathy) are a rare group of autosomal dominant diseases wherein the autonomic nervous system and/or other nerves are compromised by protein aggregation and/or amyloid fibril formation.