Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
All types of Griscelli syndrome have distinctive skin and hair coloring.
Type 1 is associated with eurological abnormalities. These include delayed development, intellectual disability, seizures, hypotonia and eye abnormalities.
Type 2 - unlike type 1 - is not associated primary neurological disease but is associated with an uncontrolled T lymphocyte expansion and macrophage activation syndrome. It is often associated with the hemophagocytic syndrome. This latter condition may be fatal in the absence of bone marrow transplantation.
Persons with type 3 have the typical light skin and hair coloring but are otherwise normal.
The skin is normal at birth. Between 3 and 6 months of age, the affected carrier develops poikiloderma on the cheeks. This characteristic "rash" that all RTS carriers have can develop on the arms, legs and buttocks. "Poikiloderma consists of areas of increased and decreased pigmentation, prominent blood vessels, and thinning of the skin."
The differential diagnosis is quite extensive and includes
- Buschke–Fischer–Brauer disease
- Curth–Macklin ichthyosis
- Gamborg Nielsen syndrome
- Greither disease
- Haber syndrome
- Hereditary punctate palmoplantar keratoderma
- Jadassohn–Lewandowsky syndrome
- Keratosis follicularis spinulosa decalvans
- Keratosis linearis with ichthyosis congenital and sclerosing keratoderma syndrome
- Meleda disease
- Mucosa hyperkeratosis syndrome
- Naegeli–Franceschetti–Jadassohn syndrome
- Naxos disease
- Olmsted syndrome
- Palmoplantar keratoderma and leukokeratosis anogenitalis
- Pandysautonomia
- Papillomatosis of Gougerot and Carteaud
- Papillon–Lefèvre syndrome
- Punctate porokeratotic keratoderma
- Richner–Hanhart syndrome
- Schöpf–Schulz–Passarge syndrome
- Unna Thost disease
- Vohwinkel syndrome
- Wong's dermatomyositis
RAPADILINO syndrome is an autosomal recessive disorder characterized by:
- RA: radial ray defect
- PA: patellar aplasia, arched or cleft palate
- DI: diarrhea, dislocated joints
- LI: little size (short stature), limb malformation
- NO: nose slender and normal intelligence.
It is more prevalent in Finland than elsewhere in the world.
It has been associated with the gene RECQL4. This is also associated with Rothmund-Thomson syndrome and Baller-Gerold syndrome.
Rothmund–Thomson syndrome (RTS), also known as poikiloderma atrophicans with cataract or poikiloderma congenitale, is a rare autosomal recessive skin condition originally described by August von Rothmund (1830–1906) in 1868. Matthew Sydney Thomson (1894–1969) published further descriptions in 1936.
There have been several reported cases associated with osteosarcoma. A hereditary genetic basis, mutations in the DNA Helicase "RECQL4" gene, causing problems during initiation of DNA replication has been implicated in the syndrome
Howel–Evans syndrome is an extremely rare condition involving thickening of the skin in the palms of the hands and the soles of the feet (hyperkeratosis). This familial disease is associated with a high lifetime risk of esophageal cancer. For this reason, it is sometimes known as tylosis with oesophageal cancer (TOC).
The condition is inherited in an autosomal dominant manner, and it has been linked to a mutation in the "RHBDF2" gene. It was first described in 1958.
Kindler syndrome (also known as "bullous acrokeratotic poikiloderma of kindler and weary", is a rare congenital disease of the skin caused by a mutation in the KIND1 gene.
Infants and young children with Kindler syndrome have a tendency to blister with minor trauma and are prone to sunburns. As individuals with Kindler syndrome age, they tend to have fewer problems with blistering and photosensitivity. However, pigment changes and thinning of the skin become more prominent.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
Symptoms(and signs) that are consistent with this disorder are the following:
The fifth type of hyper-IgM syndrome has been characterized in three patients from France and Japan. The symptoms are similar to hyper IgM syndrome type 2, but the AICDA gene is intact. These three patients instead had mutations in the catalytic domain of uracil-DNA glycosylase, an enzyme that removes uracil from DNA. In both type 2 and type 5 hyper-IgM syndromes, the patients are profoundly deficient in IgG and IgA because the B cells can't carry out the recombination steps necessary to class-switch.
The most common and defining features of BGS are craniosynostosis and radial ray deficiency. The observations of these features allow for a diagnosis of BGS to be made, as these symptoms characterize the syndrome. Craniosynostosis involves the pre-mature fusion of bones in the skull. The coronal craniosynostosis that is commonly seen in patients with BGS results in the fusion of the skull along the coronal suture. Because of the changes in how the bones of the skull are connected together, people with BGS will have an abnormally shaped head, known as brachycephaly. Features commonly seen in those with coronal craniosynostosis are bulging eyes, shallow eye pockets, and a prominent forehead. Radial ray deficiency is another clinical characteristic of those with BGS, and results in the under-development (hypoplasia) or the absence (aplasia) of the bones in the arms and the hands. These bones include the radius, the carpal bones associated with the radius and the thumb. Oligodactyly can also result from radial ray deficiency, meaning that someone with BGS may have fewer than five fingers. Radial ray deficiency that is associated with syndromes (such as BGS) occurs bi-laterally, affecting both arms.
Some of the other clinical characteristics sometimes associated with this disorder are growth retardation and poikiloderma. Although the presentation of BGS may differ between individuals, these characteristics are often observed. People with BGS may have stunted growth, short stature and misshapen kneecaps. Poikiloderma may also be present in people with this syndrome, meaning that their skin may have regions of hyperpigmentation and hypopigmentation, or regions where the skin is missing (atrophy).
Autoimmune polyendocrine syndrome type 2, a form of autoimmune polyendocrine syndrome also known as Schmidt's syndrome, or APS-II, is the most common form of the polyglandular failure syndromes. It is heterogeneous and has not been linked to one gene. Rather, individuals are at a higher risk when they carry a particular human leukocyte antigen (HLA-DQ2, HLA-DQ8 and HLA-DR4). APS-II affects women to a greater degree than men.
Focal dermal hypoplasia (also known as "Goltz syndrome") is a form of ectodermal dysplasia. It is a multisystem disorder characterized primarily by skin manifestations to the atrophic and hypoplastic areas of skin which are present at birth. These defects manifest as yellow-pink bumps on the skin and pigmentation changes. The disorder is also associated with shortness of stature and some evidence suggests that it can cause epilepsy.
Hereditary sclerosing poikiloderma is an autosomal dominant conditions with skin changes consisting of generalized poikiloderma appearing in childhood.
Complete trisomy 8 causes severe effects on the developing fetus and can be a cause of miscarriage.
Complete trisomy 8 is usually an early lethal condition, whereas trisomy 8 mosaicism is less severe and individuals with a low proportion of affected cells may exhibit a comparatively mild range of physical abnormalities and developmental delay. Individuals with trisomy 8 mosaicism are more likely to survive into childhood and adulthood, and exhibit a characteristic and recognizable pattern of developmental abnormalities. Common findings include retarded psychomotor development, moderate to severe mental retardation, variable growth patterns which can result in either abnormally short or tall stature, an expressionless face, and many musculoskeletal, visceral, and eye abnormalities, as well as other anomalies. A deep plantar furrow is considered to be pathognomonic of this condition, especially when seen in combination with other associated features. The type and severity of symptoms are dependent upon the location and proportion of trisomy 8 cells compared to normal cells.
Phakomatosis pigmentovascularis is subdivided into five types:
- Type 1 PWS + epidermal nevus
- Type 2 (most common): PWS + dermal melanocytosis +/- nevus anemicus
- Type 3: PWS + nevus spilus +/- nevus anemicus
- Type 4: PWS + nevus spilus + dermal melanocytosis +/- nevus anemicus
- Type 5: CMTC (Cutis marmorata telangiectatica congenita) + dermal melanocytosis
They all can contain capillary malformation. Type 2 is the most common and can be associated with granular cell tumor. Some further subdivide each type into categories A & B; with A representing oculocutaneous involvement and subtype B representing extra oculocutaneous involvement. Others have proposed fewer subtypes but currently this rare entity is mostly taught as having five subtypes currently.
Phakomatosis pigmentovascularis is a rare neurocutanous condition where there is coexistence of a capillary malformation (port-wine stain) with various melanocytic lesions, including dermal melanocytosis (Mongolian spots), nevus spilus, and nevus of Ota.
It has several different types:
- type 1 - Apert syndrome
- type 2 - Crouzon syndrome
- type 3 - Saethre-Chotzen syndrome
- type 5 - Pfeiffer syndrome
A related term, "acrocephalopolysyndactyly" (ACPS), refers to the inclusion of polydactyly to the presentation. It also has multiple types:
- type 1 - Noack syndrome; now classified with Pfeiffer syndrome
- type 2 - Carpenter syndrome
- type 3 - Sakati-Nyhan-Tisdale syndrome
- type 4 - Goodman syndrome; now classified with Carpenter syndrome
- type 5 - Pfeiffer syndrome
It has been suggested that the distinction between "acrocephalosyndactyly" versus "acrocephalopolysyndactyly" should be abandoned.
Acrocephalosyndactylia (or acrocephalosyndactyly) is the common presentation of craniosynostosis and syndactyly.
Trisomy 8, also known as Warkany syndrome 2, is a human chromosomal disorder caused by having three copies (trisomy) of chromosome 8. It can appear with or without mosaicism.
Baller–Gerold syndrome (BGS) is a rare genetic syndrome that involves premature fusion of the skull bones and malformations of facial, forearm and hand bones. The symptoms of Baller–Gerold syndrome overlap with features of a few other genetics disorders: Rothmund-Thomson syndrome and RAPADILINO syndrome. The prevalence of BGS is unknown, as there have only been a few reported cases, but it is estimated to be less than 1 in a million. The name Baller-Gerold comes from the researchers Baller and Gerold who discovered the first three cases.
Many of the characteristic facial features result from the premature fusion of the skull bones (craniosynostosis). The head is unable to grow normally, which leads to a high prominent forehead (turribrachycephaly), and eyes that appear to bulge (proptosis) and are wide-set (hypertelorism). In addition, there is an underdeveloped upper jaw (maxillary hypoplasia). About 50 percent of children with Pfeiffer syndrome have hearing loss, and dental problems are also common.
In people with Pfeiffer syndrome, the thumbs and first (big) toes are wide and bend away from the other digits (pollex varus and hallux varus). Unusually short fingers and toes (brachydactyly) are also common, and there may be some webbing or fusion between the digits (syndactyly).
Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive disorder which manifests with insulin resistance, absence of subcutaneous fat and muscular hypertrophy. Homozygous or compound heterozygous mutations in four genes are associated with the four subtypes of CGL. The condition appears in early childhood with accelerated linear growth, quick aging of bones, and a large appetite. As the child grows up, acanthosis nigricans (hyperpigmentation and thickening of skin) will begin to present itself throughout the body – mainly in the neck, trunk, and groin. The disorder also has characteristic features like hepatomegaly or an enlarged liver which arises from fatty liver and may lead to cirrhosis, muscle hypertrophy, lack of adipose tissue, splenomegaly, hirsutism (excessive hairiness) and hypertriglyceridemia. Fatty liver and muscle hypertrophy arise from the fact that lipids are instead stored in these areas; whereas in a healthy individual, lipids are distributed more uniformly throughout the body subcutaneously. The absence of adipose tissue where they normally occur causes the body to store fat in the remaining areas. Common cardiovascular problems related to this syndrome are cardiac hypertrophy and arterial hypertension (high blood pressure). This disorder can also cause metabolic syndrome. Most with the disorder also have a prominent umbilicus or umbilical hernia. Commonly, patients will also have acromegaly with enlargement of the hands, feet, and jaw. After puberty, additional symptoms can develop. In women, clitoromegaly and polycystic ovary syndrome can develop. This impairs fertility for women, and only a few documented cases of successful pregnancies in women with CGL exist. However, the fertility of men with the disorder is unaffected.
Children with Pfeiffer syndrome types 2 and 3 "have a higher risk for neurodevelopmental disorders and a reduced life expectancy" than children with Pfeiffer syndrome type 1, but if treated, favorable outcomes are possible. In severe cases, respiratory and neurological complications often lead to early death.