Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
New or progressive infiltrate on the chest X-ray with one of the following:
- Fever > 37.8 °C (100 °F)
- Purulent sputum
- Leukocytosis > 10,000 cells/μl
In an elderly person, the first sign of hospital-acquired pneumonia may be mental changes or confusion.
Other symptoms may include:
- A cough with greenish or pus-like phlegm (sputum)
- Fever and chills
- General discomfort, uneasiness, or ill feeling (malaise)
- Loss of appetite
- Nausea and vomiting
- Sharp chest pain that gets worse with deep breathing or coughing
- Shortness of breath
- Decreased blood pressure and fast heart rate
"Streptococcus pneumoniae" () is the most common bacterial cause of pneumonia in all age groups except newborn infants. "Streptococcus pneumoniae" is a Gram-positive bacterium that often lives in the throat of people who do not have pneumonia.
Other important Gram-positive causes of pneumonia are "Staphylococcus aureus" () and "Bacillus anthracis".
Bacterial pneumonia is a type of pneumonia caused by bacterial infection.
Hospital-acquired pneumonia (HAP) or nosocomial pneumonia refers to any pneumonia contracted by a patient in a hospital at least 48–72 hours after being admitted. It is thus distinguished from community-acquired pneumonia. It is usually caused by a bacterial infection, rather than a virus.
HAP is the second most common nosocomial infection (after urinary tract infections) and accounts for 15–20% of the total. It is the most common cause of death among nosocomial infections and is the primary cause of death in intensive care units.
HAP typically lengthens a hospital stay by 1–2 weeks.
Major complications of CAP include:
- Sepsis, when microorganisms enter the bloodstream and the immune system responds. Sepsis often occurs with bacterial pneumonia, with "streptococcus pneumoniae" the most-common cause. Patients with sepsis require intensive care, with blood-pressure monitoring and support against hypotension. Sepsis can cause liver, kidney and heart damage.
- Respiratory failure: CAP patients often have dyspnea, which may require support. Non-invasive machines (such as bilevel positive airway pressure), a tracheal tube or a ventilator may be used.
- Pleural effusion and empyema: Microorganisms from the lung may trigger fluid collection in the pleural cavity. If the microorganisms are in the fluid, the collection is an empyema. If pleural fluid is present, it should be collected with a needle and examined. Depending on the results, complete drainage of the fluid with a chest tube may be necessary. If the fluid is not drained, bacteria may continue to proliferate because antibiotics do not penetrate the pleural cavity well.
- Abscess: A pocket of fluid and bacteria may be seen on an X-ray as a cavity in the lung. Abscesses, typical of aspiration pneumonia, usually contain a mixture of anaerobic bacteria. Although antibiotics can usually cure abscesses, sometimes they require drainage by a surgeon or radiologist.
The CAP outpatient mortality rate is less than one percent, with fever typically responding to the first two days of therapy and other symptoms in the first week. However, X-rays may remain abnormal for at least a month. Hospitalized patients have an average mortality rate of 12 percent, with the rate rising to 40 percent for patients with bloodstream infections or requiring intensive care. Factors increasing mortality are identical to those indicating hospitalization.
Unresponsive CAP may be due to a complication, a previously-unknown health problem, inappropriate antibiotics for the causative organism, a previously-unsuspected microorganism (such as tuberculosis) or a condition mimicking CAP (such as granuloma with polyangiitis). Additional tests include X-ray computed tomography, bronchoscopy or lung biopsy.
Pneumonia can cause respiratory failure by triggering acute respiratory distress syndrome (ARDS), which results from a combination of infection and inflammatory response. The lungs quickly fill with fluid and become stiff. This stiffness, combined with severe difficulties extracting oxygen due to the alveolar fluid, may require long periods of mechanical ventilation for survival.
Sepsis is a potential complication of pneumonia but occurs usually in people with poor immunity or hyposplenism. The organisms most commonly involved are "Streptococcus pneumoniae", "Haemophilus influenzae", and "Klebsiella pneumoniae". Other causes of the symptoms should be considered such as a myocardial infarction or a pulmonary embolism.
The location is often gravity dependent, and depends on the patient position. Generally, the right middle and lower lung lobes are the most common sites affected, due to the larger caliber and more vertical orientation of the right mainstem bronchus. Patients who aspirate while standing can have bilateral lower lung lobe infiltrates. The right upper lobe is a common area of consolidation in alcoholics who aspirate in the prone position.
The clinical presentation of both the adult and pediatric patient with pleural empyema depends upon several factors, including the causative micro-organism. Most cases present themselves in the setting of a pneumonia, although up to one third of patients do not have clinical signs of pneumonia and as many as 25% of cases are associated with trauma (including surgery). Typical symptoms include cough, chest pain, shortness of breath and fever.
With treatment, most types of bacterial pneumonia will stabilize in 3–6 days. It often takes a few weeks before most symptoms resolve. X-ray finding typically clear within four weeks and mortality is low (less than 1%). In the elderly or people with other lung problems, recovery may take more than 12 weeks. In persons requiring hospitalization, mortality may be as high as 10%, and in those requiring intensive care it may reach 30–50%. Pneumonia is the most common hospital-acquired infection that causes death. Before the advent of antibiotics, mortality was typically 30% in those that were hospitalized.
Complications may occur in particular in the elderly and those with underlying health problems. This may include, among others: empyema, lung abscess, bronchiolitis obliterans, acute respiratory distress syndrome, sepsis, and worsening of underlying health problems.
Aspiration pneumonia is often caused by a defective swallowing mechanism, often due to a neurological disease or as the result of an injury that directly impairs swallowing or interferes with consciousness. Examples of the former are stroke, Parkinson's disease, and multiple sclerosis, and examples of the latter are some types of dementia, seizures, intoxication, and general anaesthesia. For many types of surgical operations, patients are therefore instructed to take nothing by mouth (nil per os, abbreviated as NPO) for at least four hours before surgery.
Pleural empyema is a collection of pus in the pleural cavity caused by microorganisms, usually bacteria. Often it happens in the context of a pneumonia, injury, or chest surgery. It is one of various kinds of pleural effusion. There are three stages: exudative, when there is an increase in pleural fluid with or without the presence of pus; fibrinopurulent, when fibrous septa form localized pus pockets; and the final organizing stage, when there is scarring of the pleura membranes with possible inability of the lung to expand. Simple pleural effusions occur in up to 40% of bacterial pneumonias. They are usually small and resolve with appropriate antibiotic therapy. If however an empyema develops additional intervention is required.
Anaerobes can be isolated from most types of upper respiratory tract and head and neck and infection and are especially common in chronic ones. These include tonsillar, peritonsillar and retropharyngeal abscesses, chronic otitis media, sinusitis and mastoiditis, eye ocular) infections, all deep neck space infections, parotitis, sialadenitis, thyroiditis, odontogenic infections, and postsurgical and nonsurgical head and neck wounds and abscesses., The predominant organisms are of oropharyngeal flora origin and include AGNB, "Fusobacterium" and Peptostreptococcus spp.
Anaerobes involve almost all dental infections. These include dental abscesses, endodontal pulpitis and periodontal (gingivitis and periodontitis) infections, and perimandibular space infection. Pulpitis can lead to abscess formation and eventually spread to the mandible and other neck spaces. In addition to strict anaerobic bacteria, microaerophilic streptococci and "Streptococcus salivarius" can also be present.
"Fusobacterium" spp. and anaerobic spirochetes are often the cause of acute necrotizing ulcerative gingivitis (or Vincent's angina) which is a distinct form of ulcerative gingivitis.
Deep neck infections that develop as a consequence of oral, dental and pharyngeal infections are generally polymicrobial in nature. These include extension of retropharyngeal cellulitis or abscess, mediastinitis following esophagus perforation, and dental or periodontal abscess.
Secondary peritonitis and intra-abdominal abscesses including splenic and hepatic abscesses generally occur because of the entry of enteric micro-organisms into the peritoneal cavity through a defect in the wall of the intestine or other viscus as a result of obstruction, infarction or direct trauma. Perforated appendicitis, diverticulitis, inflammatory bowel disease with perforation and gastrointestinal surgery are often associated with polymicrobial infections caused by aerobic and anaerobic bacteria, where the number of isolates can average 12 (two-thirds are generally anaerobes). The most common aerobic and facultative bacteria are "Escherichia coli", "Streptococcus" spp. (including Enterococcus spp.), and the most frequently isolated anaerobic bacteria are the "B. fragilis" group, "Peptostreptococcus" spp., and "Clostridium" spp.
Abdominal infections are characteristically biphasic: an initial stages of generalized peritonitis associated with "Escherichia coli" sepsis, and a later stages, in which intra abdominal abscesses harboring anaerobic bacteria ( including "B. fragilis" group ) emerge.
The clinical manifestations of secondary peritonitis are a reflection of the underlying disease process. Fever, diffuse abdominal pain, nausea and vomiting are common. Physical examination generally show signs of peritoneal inflammation, isuch as rebound tenderness, abdominal wall rigidity and decrease in bowel sounds. These early findings may be followed by signs and symptoms of shock.
Biliary tract infection is usually caused by "E. coli, Klebsiella" and "Enterococcus" spp. Anaerobes (mostly "B. fragilis" group, and rarely "C. perfringens") can be recovered in complicated infections associated with carcinoma, recurrent infection, obstruction, bile tract surgery or manipulation.
Laboratory studies show elevated blood leukocyte count and predominance of polymorphonuclear forms. Radiographs studies may show free air in the peritoneal cavity, evidence of ileus or obstruction and obliteration of the psoas shadow. Diagnostic ultrasound, gallium and CT scanning may detect appendiceal or other intra-abdominal abscesses. Polymicrobial postoperative wound infections can occur.
Treatment of mixed aerobic and anaerobic abdominal infections requires the utilization of antimicrobials effective against both components of the infection as well as surgical correction and drainage of pus. Single and easily accessible abscesses can be drained percutaneously.
Pneumococcal infection is an infection caused by the bacterium "Streptococcus pneumoniae". "S. pneumoniae" is a common member of the bacterial flora colonizing the nose and throat of 5–10% of healthy adults and 20–40% of healthy children. However, it is also the cause of significant disease being a leading cause of pneumonia, bacterial meningitis, and sepsis. The World Health Organization estimate that in 2005 pneumococcal infections were responsible for the death of 1.6 million children worldwide.
A hospital-acquired infection (HAI), also known as a nosocomial infection, is an infection that is acquired in a hospital or other health care facility. To emphasize both hospital and nonhospital settings, it is sometimes instead called a health care–associated infection (HAI or HCAI). Such an infection can be acquired in hospital, nursing home, rehabilitation facility, outpatient clinic, or other clinical settings. Infection is spread to the susceptible patient in the clinical setting by various means. Health care staff can spread infection, in addition to contaminated equipment, bed linens, or air droplets. The infection can originate from the outside environment, another infected patient, staff that may be infected, or in some cases, the source of the infection cannot be determined. In some cases the microorganism originates from the patient's own skin microbiota, becoming opportunistic after surgery or other procedures that compromise the protective skin barrier. Though the patient may have contracted the infection from their own skin, the infection is still considered nosocomial since it develops in the health care setting.
In the United States, the Centers for Disease Control and Prevention estimated roughly 1.7 million hospital-associated infections, from all types of microorganisms, including bacteria and fungi combined, cause or contribute to 99,000 deaths each year. In Europe, where hospital surveys have been conducted, the category of gram-negative infections are estimated to account for two-thirds of the 25,000 deaths each year. Nosocomial infections can cause severe pneumonia and infections of the urinary tract, bloodstream and other parts of the body. Many types are difficult to treat with antibiotics. In addition, antibiotic resistance can complicate treatment.
"S. pneumoniae" is responsible for 15–50% of all episodes of community acquired pneumonia, 30–50% of all cases of acute otitis media, and a significant proportion of bloodstream infections and bacterial meningitis.
As estimated by WHO in 2005 it killed about 1.6 million children every year worldwide with 0.7–1 million of them being under the age of five. The majority of these deaths were in developing countries.
Bacterial tracheitis is a bacterial infection of the trachea and is capable of producing airway obstruction.
One of the most common causes is "Staphylococcus aureus" and often follows a recent viral upper respiratory infection. Bacterial tracheitis is a rare complication of influenza infection. It is the most serious in young children, possibly because of the relatively small size of the trachea that gets easily blocked by swelling. The most frequent sign is the rapid development of stridor. It is occasionally confused with croup.
If it is inflamed, a condition known as tracheitis can occur. In this condition there can be inflammation of the linings of the trachea. A condition called tracheo-bronchitis can be caused, when the mucous membrane of the trachea and bronchi swell. A collapsed trachea is formed as a result of defect in the cartilage, that makes the cartilage unable to support the trachea and results in dry hacking cough. In this condition there can be inflammation of the linings of the trachea. If the connective nerve tissues in the trachea degenerate it causes tracheomalacia. Infections to the trachea can cause tracheomegaly.
Bacteremia is the presence of bacteria in the bloodstream that are alive and capable of reproducing. It is a type of bloodstream infection. Bacteremia is defined as either a primary or secondary process. In primary bacteremia, bacteria have been directly introduced into the bloodstream. Injection drug use may lead to primary bacteremia. In the hospital setting, use of blood vessel catheters contaminated with bacteria may also lead to primary bacteremia. Secondary bacteremia occurs when bacteria have entered the body at another site, such as the cuts in the skin, or the mucous membranes of the lungs (respiratory tract), mouth or intestines (gastrointestinal tract), bladder (urinary tract), or genitals. Bacteria that have infected the body at these sites may then spread into the lymphatic system and gain access to the bloodstream, where further spread can occur.
Bacteremia may also be defined by the timing of bacteria presence in the bloodstream: transient, intermittent, or persistent. In transient bacteremia, bacteria are present in the bloodstream for minutes to a few hours before being cleared from the body, and the result is typically harmless in healthy people. This can occur after manipulation of parts of the body normally colonized by bacteria, such as the mucosal surfaces of the mouth during teeth brushing, flossing, or dental procedures, or instrumentation of the bladder or colon. Intermittent bacteremia is characterized by periodic seeding of the same bacteria into the bloodstream by an existing infection elsewhere in the body, such as an abscess, pneumonia, or bone infection, followed by clearing of that bacteria from the bloodstream. This cycle will often repeat until the existing infection is successfully treated. Persistent bacteremia is characterized by the continuous presence of bacteria in the bloodstream. It is usually the result of an infected heart valve, a central line-associated bloodstream infection (CLABSI), an infected blood clot (suppurative thrombophlebitis), or an infected blood vessel graft. Persistent bacteremia can also occur as part of the infection process of typhoid fever, brucellosis, and bacterial meningitis. Left untreated, conditions causing persistent bacteremia can be potentially fatal.
Bacteremia is clinically distinct from sepsis, which is a condition where the blood stream infection is associated with an inflammatory response from the body, often causing abnormalities in body temperature, heart rate, breathing rate, blood pressure, and white blood cell count.
A carbuncle is a cluster of several boils, which is typically filled with purulent exudate (dead neutrophils, phagocitized bacteria, & other cellular components). Fluid may drain freely from the carbuncle, or intervention involving an incision and drainage procedure may be needed. Carbuncles may develop anywhere, but they are most common on the back and the nape of the neck.
A carbuncle is palpable and can range in size to be as small as a pea or as large as a golf ball. As the impending infection develops, itching may occur. There may be localized erythema, skin irritation, and the area may be painful when touched. Sometimes more severe symptoms may occur, such as fatigue, fever, chills, and malaise.
Pneumonia occurs when the lungs become infected, causing inflammation (swelling). Symptoms of pneumonia usually include:
- Fever (but older people may have lower than normal body temperature)
- Cough
- Shortness of breath
- Chills
- Sweating
- Chest pain that comes and goes with breathing
- Headache
- Muscle pain
- Excessive tiredness
- Nails may turn blue from lack of oxygen
Epiglottitis is associated with fever, difficulty in swallowing, drooling, hoarseness of voice, and typically stridor. Stridor is a sign of upper airways obstruction and is a surgical emergency. The child often appears acutely ill, anxious, and has very quiet shallow breathing with the head held forward, insisting on sitting up in bed. The early symptoms are insidious but rapidly progressive, and swelling of the throat may lead to cyanosis and asphyxiation.
Since the introduction of the "Hemophilus influenzae" (Hib) vaccination in many Western countries, childhood incidence has decreased while adult incidence has remained the same; the disease is thus becoming "relatively" more common in adults than children.
Bacteremia is typically transient and is quickly removed from the blood by the immune system.
Bacteremia frequently evokes a response from the immune system called Sepsis, which consists of symptoms such as fever, chills, and hypotension. Severe immune responses to bacteremia may result in septic shock and "multiple organ dysfunction syndrome", which are potentially fatal.
Bacteremia can travel through the blood stream to distant sites in the body and cause infection (hematogenous spread). Hematogenous spread of bacteria is part of the pathophysiology of certain infections of the heart (endocarditis), structures around the brain (meningitis), and tuberculosis of the spine (Pott's disease). Hematogenous spread of bacteria is responsible for many bone infections (osteomyelitis).
Prosthetic cardiac implants (for example artificial heart valves) are especially vulnerable to infection from bacteremia.
Prior to widespread use of vaccines, occult bacteremia was an important consideration in febrile children that appeared otherwise well.
The initial cause of a carbuncle can often not be determined. Triggers that make carbuncle infections more likely include recent incidence of folliculitis; friction from clothing or shaving; having hair pulled out, such as sites where clothing or furniture grab at hairs; generally poor hygiene; poor nutrition; or weakened immunity. Poor health may be a predisposing factor – for example, persons with diabetes and immune system diseases are more likely to develop infections (especially bacterial infections of the leg or foot).
Acute adenoiditis is characterized by fever, runny nose, nasal airway obstruction resulting in predominantly oral breathing, snoring and sleep apnea, Rhinorrhea with serous secretion in viral forms and mucous-purulent secretion in bacterial forms. In cases due to viral infection symptoms usually recede spontaneously after 48 hours, symptoms of bacterial adenoiditis typically persist up to a week. Adenoiditis is sometimes accompanied by tonsillitis. Repeated adenoiditis may lead to enlarged adenoids.