Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The presentation of TTP is variable. The initial symptoms, which force the patient to medical care, are often the consequence of lower platelet counts like purpura (present in 90% of patients), ecchymosis and hematoma. Patients may also report signs and symptoms as a result of (microangiopathic) hemolytic anemia, such as (dark) beer-brown urine, (mild) jaundice, fatigue and pallor. Cerebral symptoms of various degree are present in many patients, including headache, paresis, speech disorder, visual problems, seizures and disturbance of consciousness up to coma. The symptoms can fluctuate so that they may only be temporarily present but may reappear again later in the TTP episode. Other unspecific symptoms are general malaise, abdominal, joint and muscle pain. Severe manifestations of heart or lung involvements are rare, although affections are not seldom measurable (such as ECG-changes).
SPS is diagnosed by demonstrating platelet hyperaggregability. In a lab test called aggregometry platelet stickyness is stimulated with epinephrine (EPI) and/or adenosine diphosphate (ADP). This test is not possible for patients being treated with acetylsalicylic acid until that substance has sufficiently cleared from their system.
Giant platelet disorders can be further categorized:
- caused by auto-immune disorders, for example Immune thrombocytopenic purpura (ITP), and characterized by low platelet count, but high MPV (Mean-Platelet Volume).
- Caused by glycoprotein abnormalities: Bernard-Soulier syndrome, Velocardiofacial syndrome
- Caused by calpain defect: Montreal platelet syndrome
- Caused by alpha granules defect: Gray platelet syndrome
- Characterized by abnormal neutrophil inclusions: May-Hegglin anomaly, Sebastian syndrome
- With systemic manifestations: Hereditary macrothrombocytopenia with hearing loss, Epstein syndrome, Fechtner syndrome
- With no specific abnormalities: Mediterranean macrothrombocytopenia
- Harris platelet syndrome
Bernard–Soulier syndrome often presents as a bleeding disorder with symptoms of:
Symptoms usually present from the period of birth to early childhood as: nose bleeds, bruising, and/or gum bleeding. Problems later in life may arise from anything that can cause internal bleeding such as: stomach ulcers, surgery, trauma, or menstruation. Abnormality of the abdomen, Epistaxis, Menorrhagia, Purpura, Thrombocytopenia, and prolonged bleeding time have also been listed as symptoms of various Giant Platelet Disorders.
Sticky platelet syndrome is a term used by some to describe a disorder of platelet function. It was first described by Mammen in 1983. It is inherited in an autosomal dominant pattern. It has not been associated with a specific gene, and it is not recognized as an entity in OMIM.
Among researchers using the term, it has been described as a coagulation disorder that can present in conjunction with protein S deficiency and Factor V Leiden. It is not currently known if sticky platelet syndrome is a distinct condition, or if it represents part of the presentation of a more well characterized coagulation disorder.
Harris platelet syndrome (HPS) is the most common inherited giant platelet disorder.
HPS was identified among healthy blood donors in the north-eastern part of the Indian subcontinent, characterized by absent bleeding symptoms, mild to severe thrombocytopenia (platelets rarely <50 X 109/L)with giant platelets (Mean platelet volume 10fL) and normal platelet aggregation studies with absent MYH9 mutation.
In the blood donors with HPS authors found a statistically higher MPV, RDW and a lower platelet count and platelet biomass.
At present the diagnosis of HPS is made by ascertaining the ethnicity of the patient, as well as assessing for conditions causing acquired thrombocytopenias, and after also excluding the known inherited giant platelet disorders(IGPD) and other congenital thrombocytopenias. Unfortunately some patients with IGPD are treated inappropriately with corticosteroids, immunoglobulin infusions and even splenectomy.
It is extremely important to recognize Harris platelet syndrome, as one third the population of certain parts of Indian subcontinent is affected.
X-linked thrombocytopenia is typically diagnosed in infancy. The disease presents as a bleeding disorder with easy bruising, mucosal bleeding, such as nosebleeds, and mild to severe anemia. Anemia is a condition in which there is an insufficient number of red blood cells to carry adequate levels of oxygen to the body’s tissues. X-linked thrombocytopenia is considered to be the milder phenotype of the "WAS"-related disorders. As age increases, the severity of symptoms tends to decrease. However, individuals with X-linked thrombocytopenia have an increased risk for life-threatening brain hemorrhages and spontaneous bleeding.
Most people with ET are without symptoms referable to ET at the time of diagnosis, which is usually ultimately made after noting an elevated platelet level on a routine complete blood count (CBC). The most common symptoms are bleeding (due to dysfunctional platelets), blood clots (e.g., deep vein thrombosis or pulmonary embolism), headache, nausea, vomiting, abdominal pain, visual disturbances, dizziness, fainting, and numbness in the extremities; the most common signs are increased white blood cell count, reduced red blood cell count, and an enlarged spleen.
Individuals with QPD are at risk for experiencing a number of bleeding symptoms, including joint bleeds, hematuria, and large bruising. In 2010, the genetic cause of QPD has been determined as a mutation involving an extra copy of the uPA (urokinase plasminogen activator) gene http://bloodjournal.hematologylibrary.org/content/115/6/1264.long. The mutation causes overproduction of an enzyme that accelerates blood clot breakdown.
Many cases of congenital dysfibrinogenemia are asymptomatic. Since manifestations of the disorder generally occur in early adulthood or middle-age, younger individuals with a gene mutation causing it may not have had time to develop symptoms while previously asymptomatic individuals of advanced age with such a mutation are unlikely to develop symptoms. Bleeding episodes in most cases of this disorder are mild and commonly involve easy bruising and menorrhagia. Less common manifestations of bleeding may be severe or even life-threatening; these include excessive bleeding after tooth extraction, surgery, vaginal birth, and miscarriage. Rarely, these individuals may suffer hemarthrosis or cerebral hemorrhage. In one study of 37 individuals >50 years old afflicted with this disorder, 19% had a history of thrombosis. Thrombotic complications occur in both arteries and veins and include transient ischemic attack, ischemic stroke, myocardial infarction, retinal artery thrombosis, peripheral artery thrombosis, and deep vein thrombosis. In one series of 33 individuals with a history of thrombosis due to congenital dysfibrinogenemia, five developed chronic pulmonary hypertension due to ongoing pulmonary embolism probably stemming form deep vein thrombosis. About 26% of individuals with the disorder suffer both bleeding and thrombosis complications.
The various types of vWD present with varying degrees of bleeding tendency, usually in the form of easy bruising, nosebleeds, and bleeding gums. Women may experience heavy menstrual periods and blood loss during childbirth.
Severe internal bleeding and bleeding into joints are uncommon in all but the most severe type, vWD type 3.
Gray platelet syndrome (GPS), or platelet alpha-granule deficiency, is a rare congenital autosomal recessive bleeding disorder caused by a reduction or absence of alpha-granules in blood platelets, and the release of proteins normally contained in these granules into the marrow, causing myelofibrosis.
GPS is primarily inherited in an autosomal recessive manner, and the gene that is mutated in GPS has recently been mapped to chromosome 3p and identified as "NBEAL2". "NBEAL2" encodes a protein containing a BEACH domain that is predicted to be involved in vesicular trafficking. It is expressed in platelets and megakaryocytes and is required for the development of platelet alpha-granules. "NBEAL2" expression is also required for the development of thrombocytes in zebrafish.
GPS is characterized by "thrombocytopenia, and abnormally large agranular platelets in peripheral blood smears." The defect in GPS is the failure of megakaryocytes to package secretory proteins into alpha-granules. Patients with the GPS are affected by mild to moderate bleeding tendencies. Usually these are not major bleeds but there has been some life threatening cases. Also Women will tend to have heavy, irregular periods. Myelofibrosis is a condition that usually comes with the Gray Platelet syndrome.
Type 1 vWD (60-80% of all vWD cases) is a quantitative defect which is heterozygous for the defective gene. It can arise from failure to secrete vWF into the circulation or from vWF being cleared more quickly than normal. Decreased levels of vWF are detected at 20-50% of normal, i.e. 20-50 IU.
Many patients are asymptomatic or may have mild symptoms and not have clearly impaired clotting, which might suggest a bleeding disorder. Often, the discovery of vWD occurs incidentally to other medical procedures requiring a blood work-up. Most cases of type 1 vWD are never diagnosed due to the asymptomatic or mild presentation of type I and most people usually end up leading a normal life free of complications, with many being unaware that they have the disorder.
Trouble may, however, arise in some patients in the form of bleeding following surgery (including dental procedures), noticeable easy bruising, or menorrhagia (heavy menstrual periods). The minority of cases of type 1 may present with severe hemorrhagic symptoms.
Characteristically, there is increased mucosal bleeding:
- menorrhagia
- easy bruising
- epistaxis
- gingival bleeding
- gastrointestinal bleeding
- postpartum bleeding
- increased bleeding post-operatively.
The bleeding tendency is variable but may be severe. Hemarthrosis, particularly spontaneous, is very rare, in contrast to the hemophilias.
Platelet numbers and morphology are normal. Platelet aggregation is normal with ristocetin, but impaired with other agonists such as ADP, thrombin, collagen or epinephrine.
Glanzmann's thrombasthenia is an abnormality of the platelets. It is an extremely rare coagulopathy (bleeding disorder due to a blood abnormality), in which the platelets contain defective or low levels of glycoprotein IIb/IIIa (GpIIb/IIIa), which is a receptor for fibrinogen. As a result, no fibrinogen bridging of platelets to other platelets can occur, and the bleeding time is significantly prolonged.
Essential thrombocythemia (ET) is a rare chronic blood condition characterised by the overproduction of platelets by megakaryocytes in the bone marrow. It may, albeit rarely, develop into acute myeloid leukemia or myelofibrosis. It is one of four myeloproliferative neoplasms (blood cancers that occur when the body makes too many white or red blood cells, or platelets).
The differential diagnosis for Bernard–Soulier syndrome includes both Glanzmann thrombasthenia and pediatric Von Willebrand disease. BSS platelets do not aggregate to ristocetin, and this defect is not corrected by the addition of normal plasma, distinguishing it from von Willebrand disease.
Quebec Platelet Disorder (QPD) is a rare, autosomal dominant bleeding disorder described in a family from the province of Quebec in Canada.
Upshaw–Schulman syndrome (USS) is the recessively inherited form of thrombotic thrombocytopenic purpura (TTP), a rare and complex blood coagulation disease. USS is caused by the absence of the ADAMTS13 protease resulting in the persistence of ultra large von Willebrand factor multimers (ULVWF), causing episodes of acute thrombotic microangiopathy with disseminated multiple small vessel obstructions. These obstructions deprive downstream tissues from blood and oxygen, which can result in tissue damage and death. The presentation of an acute USS episode is variable but usually associated with thrombocytopenia, microangiopathic hemolytic anemia (MAHA) with schistocytes on the peripheral blood smear, fever and signs of ischemic organ damage in the brain, kidney and heart.
This condition may involve the alpha granules or the dense granules.
Therefore the following examples include:
- Platelet alpha-granules
- Gray platelet syndrome
- Quebec platelet disorder
- Dense granules
- δ-Storage pool deficiency
- Hermansky–Pudlak syndrome
- Chédiak–Higashi syndrome
X-linked thrombocytopenia, also referred to as XLT or thrombocytopenia 1, is an inherited clotting disorder that primarily affects males. It is a "WAS"-related disorder, meaning it is caused by a mutation in the Wiskott-Aldrich Syndrome ("WAS") gene, which is located on the short arm of the X chromosome. "WAS"-related disorders include Wiskott-Aldrich syndrome, XLT, and X-linked congenital neutropenia (XLN). Of the "WAS"-related disorders, X-linked thrombocytopenia is considered to be the milder phenotype. Between 1 and 10 per million males worldwide are affected with this disorder. Females may be affected with this disorder but this is very rare since females have two X chromosomes and are therefore typically carriers of the mutation.
The dysfibrinogenemias consist of three types of fibrinogen disorders in which a critical blood clotting factor, fibrinogen, circulates at normal levels but is dysfunctional. Congenital dysfibrinogenemia is an inherited disorder in which one of the parental genes produces an abnormal fibrinogen. This fibrinogen interferes with normal blood clotting and/or lyses of blood clots. The condition therefore may cause pathological bleeding and/or thrombosis. Acquired dysfibrinogenemia is a non-hereditary disorder in which fibrinogen is dysfunctional due to the presence of liver disease, autoimmune disease, a plasma cell dyscrasias, or certain cancers. It is associated primarily with pathological bleeding. Hereditary fibrinogen Aα-Chain amyloidosis is a sub-category of congenital dysfibrinogenemia in which the dysfunctional fibrinogen does not cause bleeding or thrombosis but rather gradually accumulates in, and disrupts the function of, the kidney.
Congenital dysfibrinogenmia is the commonest of these three disorders. Some 100 different genetic mutations occurring in more than 400 families have been found to cause it. All of these mutations as well as those causing hereditary fibrinogen Aα-Chain amyloidosis exhibit partial penetrance, i.e. only some family members with one of these mutant genes develop dysfibrinogenemia-related symptoms. While both of these congenital disorders as well as acquired dysfibrinogenemia are considered very rare, it is estimated that ~0.8% of individuals with venous thrombosis have either a congenital or acquired dysfibrinogenemia. Hence, the dysfibrinogenemia disorders may be highly under-diagnosed conditions due to isolated thrombotic events that are not appreciated as reflecting an underlying fibrinogen disorder.
Congenital dysfibrinogenemia is distinguished from a similar inherited disorder, congenital hypodysfibrinogenemia. Both disorders involve the circulation of dysfunctional fibrinogen but in congenital hypodysfibrinogenemia plasma fibrinogen levels are low while in congenital dysfibrinogenemia they are normal. Furthermore, the two disorders involve different gene mutations and inheritance patterns as well as somewhat different symptoms.
Platelet storage pool deficiency is a type of coagulopathy characterized by defects in the granules in platelets, particularly a lack of granular non-metabolic ADP. Individuals with ADP deficient "storage pool disease" present a prolonged bleeding time due to impaired aggregation response to fibrillar collagen.