Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
People with Aarskog-Scott syndrome often have distinctive facial features, such as widely spaced eyes (hypertelorism), a small nose, a long area between the nose and mouth (philtrum), and a widow's peak hairline. They frequently have mild to moderate short stature during childhood, but their growth usually catches up with that of their peers during puberty. Hand abnormalities are common in this syndrome and include short fingers (brachydactyly), curved pinky fingers (fifth finger clinodactyly), webbing of the skin between some fingers (cutaneous syndactyly), and a single crease across the palm. Other abnormalities in people with Aarskog-Scott syndrome include heart defects and a split in the upper lip (cleft lip) with or without an opening in the roof of the mouth (cleft palate).
Most males with Aarskog-Scott syndrome have a shawl scrotum, in which the scrotum surrounds the penis instead of hanging below. Less often, they have undescended testes (cryptorchidism) or a soft out-pouching around the belly-button (umbilical hernia) or in the lower abdomen (inguinal hernia).
The intellectual development of people with Aarskog-Scott syndrome varies widely. Some may have mild learning and behavior problems, while others have normal intelligence. In rare cases, severe intellectual disability has been reported.
SFMS affects the skeletal and nervous system. This syndrome's external signs would be an unusual facial appearance with their heads being slightly smaller and unusually shaped, a narrow face which is also called dolichocephaly, a large mouth with a drooping lower lip that are held open, protruding upper jaw, widely spaced upper front teeth, an underdeveloped chin, cleft palate and exotropied-slanted eyes with drooping eyelids.
Males who have SFMS have short stature and a thin body build. Also skin is lightly pigmented with multiple freckles. They may have scoliosis and chest abnormalities.
Affected boys have reduced muscle tone as infants and young children. X-rays sometimes show that their bones are underdeveloped and show characteristics of younger bones of children. Boys usually under the age of 10 have reduced muscle tone but later, patients with SFMS over the age of 10 have increased muscle tone and reflexes that cause spasticity. Their hands are short with unusual palm creases with short, shaped fingers and foot abnormalities are shortened and have fused toes and usually mild.
They have an absent of a spleen and the genitals may also show undescended testes ranging from mild to severe that leads to female gender assignment.
People who have SFMS have severe mental retardation. They are sometimes restless, behavior problems, seizures and severe delay in language development. They are self-absorbed with reduced ability to socialize with others around them. They also have psychomotor retardation which is the slowing-down of thoughts and a reduction of physical movements. They have cortical atrophy or degeneration of the brain's outer layer. Cortical atrophy is usually founded in older affected people.
Aarskog–Scott syndrome is a rare disease inherited as X-linked and characterized by short stature, facial abnormalities, skeletal and genital anomalies. This condition mainly affects males, although females may have mild features of the syndrome.
The Aarskog–Scott syndrome (AAS) is also known as the Aarskog syndrome, faciodigitogenital syndrome, shawl scrotum syndrome and faciogenital dysplasia.
Many of the characteristic facial features result from the premature fusion of the skull bones (craniosynostosis). The head is unable to grow normally, which leads to a high prominent forehead (turribrachycephaly), and eyes that appear to bulge (proptosis) and are wide-set (hypertelorism). In addition, there is an underdeveloped upper jaw (maxillary hypoplasia). About 50 percent of children with Pfeiffer syndrome have hearing loss, and dental problems are also common.
In people with Pfeiffer syndrome, the thumbs and first (big) toes are wide and bend away from the other digits (pollex varus and hallux varus). Unusually short fingers and toes (brachydactyly) are also common, and there may be some webbing or fusion between the digits (syndactyly).
Children with Pfeiffer syndrome types 2 and 3 "have a higher risk for neurodevelopmental disorders and a reduced life expectancy" than children with Pfeiffer syndrome type 1, but if treated, favorable outcomes are possible. In severe cases, respiratory and neurological complications often lead to early death.
Of those fetuses that do survive to gestation and subsequent birth, common abnormalities may include:
- Nervous system
- Intellectual disability and motor disorder
- Microcephaly
- Holoprosencephaly (failure of the forebrain to divide properly).
- Structural eye defects, including microphthalmia, Peters' anomaly, cataract, iris or fundus (coloboma), retinal dysplasia or retinal detachment, sensory nystagmus, cortical visual loss, and optic nerve hypoplasia
- Meningomyelocele (a spinal defect)
- Musculoskeletal and cutaneous
- Polydactyly (extra digits)
- Cyclopia
- Proboscis
- Congenital trigger digits
- Low-set ears
- Prominent heel
- Deformed feet known as rocker-bottom feet
- Omphalocele (abdominal defect)
- Abnormal palm pattern
- Overlapping of fingers over thumb
- Cutis aplasia (missing portion of the skin/hair)
- Cleft palate
- Urogenital
- Abnormal genitalia
- Kidney defects
- Other
- Heart defects (ventricular septal defect) (Patent Ductus Arteriosus)
- Dextrocardia
- Single umbilical artery
Smith–Fineman–Myers syndrome (SFMS1), congenital disorder that causes birth defects. This syndrome was named after 3 men, Richard D. Smith, Robert M. Fineman and Gart G. Myers who discovered it around 1980.
Common relevant features of acrocephalosyndactyly are a high-arched palate, pseudomandibular prognathism (appearing as mandibular prognathism), a narrow palate, and crowding of the teeth.
Acrocephalosyndactylia (or acrocephalosyndactyly) is the common presentation of craniosynostosis and syndactyly.
It has several different types:
- type 1 - Apert syndrome
- type 2 - Crouzon syndrome
- type 3 - Saethre-Chotzen syndrome
- type 5 - Pfeiffer syndrome
A related term, "acrocephalopolysyndactyly" (ACPS), refers to the inclusion of polydactyly to the presentation. It also has multiple types:
- type 1 - Noack syndrome; now classified with Pfeiffer syndrome
- type 2 - Carpenter syndrome
- type 3 - Sakati-Nyhan-Tisdale syndrome
- type 4 - Goodman syndrome; now classified with Carpenter syndrome
- type 5 - Pfeiffer syndrome
It has been suggested that the distinction between "acrocephalosyndactyly" versus "acrocephalopolysyndactyly" should be abandoned.
In humans, a single transverse palmar crease is a single crease that extends across the palm of the hand, formed by the fusion of the two palmar creases (known in palmistry as the "heart line" and the "head line") and is found in people with Down Syndrome. It is also found in 1.5% of the general population in at least one hand.
Because it resembles the usual condition of non-human simians, it is also known as a simian crease or simian line, although these terms have widely fallen out of favor due to their pejorative connotation.
This feature can occur on its own, with no underlying health problems. However, it can also be associated with certain medical conditions. Examples include Marfan syndrome, Ehlers-Danlos syndrome, Loeys–Dietz syndrome, congenital contractural arachnodactyly, and homocystinuria.
Arachnodactyly has been linked to mutations in both fibrillin-1 and fibrillin-2 genes.
The cranial malformations are the most apparent effects of acrocephalosyndactyly. Craniosynostosis occurs, in which the cranial sutures close too soon, though the child's brain is still growing and expanding. Brachycephaly is the common pattern of growth, where the coronal sutures close prematurely, preventing the skull from expanding frontward or backward, and causing the brain to expand the skull to the sides and upwards. This results in another common characteristic, a high, prominent forehead with a flat back of the skull. Due to the premature closing of the coronal sutures, increased cranial pressure can develop, leading to mental deficiency. A flat or concave face may develop as a result of deficient growth in the mid-facial bones, leading to a conditir prognathism. Other features of acrocephalosyndactyly may include shallow bony orbits and broadly spaced eyes. Low-set ears are also a typical characteristic of branchial arch syndromes.
Patau syndrome is a syndrome caused by a chromosomal abnormality, in which some or all of the cells of the body contain extra genetic material from chromosome 13. The extra genetic material disrupts normal development, causing multiple and complex organ defects.
This can occur either because each cell contains a full extra copy of chromosome 13 (a disorder known as trisomy 13 or trisomy D), or because each cell contains an extra partial copy of the chromosome (i.e., Robertsonian translocation) or because of mosaic Patau syndrome. Full trisomy 13 is caused by nondisjunction of chromosomes during meiosis (the mosaic form is caused by nondisjunction during mitosis).
Like all nondisjunction conditions (such as Down syndrome and Edwards syndrome), the risk of this syndrome in the offspring increases with maternal age at pregnancy, with about 31 years being the average. Patau syndrome affects somewhere between 1 in 10,000 and 1 in 21,700 live births.
Arachnodactyly ("spider fingers") or achromachia is a condition in which the fingers and toes are abnormally long and slender, in comparison to the palm of the hand and arch of the foot. Also, the individual's thumbs tend to also be pulled inwards towards the palm. It can be present at birth or develop in later life.
In the above brachydactyly syndromes, short digits are the most prominent of the anomalies, but in many other syndromes (Down syndrome, Rubinstein-Taybi syndrome, etc.), brachydactyly is a minor feature compared to the other anomalies or problems comprising the syndrome.
Individuals with Treacher Collins syndrome often have both cleft palate and hearing loss, in addition to other disabilities. Hearing loss is often secondary to absent, small, or unusually formed ears (microtia), and commonly results from malformations of the middle ear. Researchers have found that most patients with Treacher Collins syndrome have symmetric external ear canal abnormalities and symmetrically dysmorphic or absent ossicles in the middle ear space. Inner ear structure is largely normal. Most patients show a moderate hearing impairment or greater, and the type of loss is generally a conductive hearing loss. Patients with Treacher Collins syndrome exhibit hearing losses similar to those of patients with malformed or missing ossicles (Pron "et al.", 1993).
Diagnosing the congenital clasped thumb is difficult in the first three to four months of life, as it is normal when the thumb is clutched into the palm in these first months.
Diagnoses that cause the same flexion or adduction abnormalities of the thumb are:
- Congenital clasped thumb
- Congenital Trigger thumb (flexion of the interphalangeal joint) - Trigger finger
- Spasticity: overstimulation of muscles
Syndrome associated flexion-adduction of the thumb:
- Freeman-Sheldon syndrome (a congenital, heritable affection of the face, the hands, the feet and some joints)
- Distal arthrogryposis
- MASA syndrome
- X-linked hydrocephalus
- Adducted thumb syndrome
- Waardenburg syndrome
- Whistling face syndrome (Freeman-Sheldon syndrome)
- Digitotalar dysmorphism
- Multiple pterygium syndrome
Males are twice as likely as females to have this characteristic, and it tends to run in families. In its non-symptomatic form, it is more common among Asians and Native Americans than among other populations, and in some families there is a tendency to inherit the condition unilaterally, that is, on one hand only.
The presence of a single transverse palmar crease can be, but is not always, a symptom associated with abnormal medical conditions, such as fetal alcohol syndrome, or with genetic chromosomal abnormalities, including Down Syndrome (chromosome 21), cri du chat syndrome (chromosome 5), Klinefelter syndrome, Wolf-Hirschhorn Syndrome, Noonan syndrome (chromosome 12), Patau syndrome (chromosome 13), IDIC 15/Dup15q (chromosome 15), Edward's syndrome (chromosome 18), and Aarskog-Scott syndrome (X-linked recessive), or autosomal recessive disorder, such as Leaukocyte adhesion deficiency-2 (LAD2). A unilateral single palmar crease was also reported in a case of chromosome 9 mutation causing Nevoid basal cell carcinoma syndrome and Robinow syndrome. It is also sometimes found on the hand of the affected side of patients with Poland Syndrome, and craniosynostosis.
Ectrodactyly, split hand, cleft hand, derived from the Greek "ektroma" (abortion) and "daktylos" (finger) involves the deficiency or absence of one or more central digits of the hand or foot and is also known as split hand/split foot malformation (SHFM). The hands and feet of people with ectrodactyly are often described as "claw-like" and may include only the thumb and one finger (usually either the little finger, ring finger, or a syndactyly of the two) with similar abnormalities of the feet.
It is a rare form of a congenital disorder in which the development of the hand is disturbed. It is a type I failure of formation – longitudinal arrest. The central ray of the hand is affected and usually appears without proximal deficiencies of nerves, vessels, tendons, muscles and bones in contrast to the radial and ulnar deficiencies. The cleft hand appears as a V-shaped cleft situated in the centre of the hand. The digits at the borders of the cleft might be syndactilyzed, and one or more digits can be absent. In most types, the thumb, ring finger and little finger are the less affected parts of the hand. The incidence of cleft hand varies from 1 in 90,000 to 1 in 10,000 births depending on the used classification. Cleft hand can appear unilateral or bilateral, and can appear isolated or associated with a syndrome.
Split hand/foot malformation (SHFM) is characterized by underdeveloped or absent central digital rays, clefts of hands and feet, and variable syndactyly of the remaining digits. SHFM is a heterogeneous condition caused by abnormalities at one of multiple loci, including SHFM1 (SHFM1 at 7q21-q22), SHFM2 (Xq26), SHFM3 (FBXW4/DACTYLIN at 10q24), SHFM4 (TP63 at 3q27), and SHFM5 (DLX1 and DLX 2 at 2q31). SHFM3 is unique in that it is caused by submicroscopic tandem chromosome duplications of FBXW4/DACTYLIN. SHFM3 is considered 'isolated' ectrodactyly and does not show a mutation of the tp63 gene.
This condition is normally discovered at birth. If other symptoms are present, a specific syndrome may be indicated. Diagnosis of a specific syndrome is based on family history, medical history, and a physical exam. Webbed toes are also known as "twin toes," "duck toes," "turkey toes" and "tiger toes."
Severity can vary. Most cases involve the second and third toes but any number of toes can be involved. In some cases the toes are joined part way while in some the webbing can extend right up to the nails. In some cases the entire toes, including the nails and bones, can be fused.
There is no consensus on what degree of angulation justifies a diagnosis, an incline between 15° and 30° is typical. A similar-sounding term, camptodactyly, is a fixed flexion deformity of a digit.
Symbrachydactyly is a congenital abnormality, characterized by limb anomalies consisting of brachydactyly, cutaneous syndactyly and global hypoplasia of the hand or foot. In many cases, bones will be missing from the fingers and some fingers or toes may be missing altogether. The ends of the hand may have "nubbins"—small stumps where the finger would have developed, which may have tiny residual nails.
Symbrachydactyly has been reported to appear without other combined limb anomalies and usually in one arm in 1 in 30,000 births to 1 in 40,000 births.
The cause of symbrachydactyly is unknown. One possible cause might be an interruption of the blood supply to the developing arm at four to six weeks of pregnancy. There is no link to anything the mother did or did not do during pregnancy. There is also no increased risk of having another child with the same condition or that the child will pass the condition on to his or her children.
In most cases, children born with symbrachydactyly are able to adapt to their physical limitations and experience a fully functional life with no treatment. Most children with this condition can use their hands well enough to do all the usual things children do. Possible treatment includes surgery or a routine of regularly stretching the fingers.
Due to a developmental arrest there is an abnormal alignment of the joint surfaces at either interphalangeal joint causing angulation in the plane of the palm. The finger may be slightly bent or have a very prominent bend.
Ectrodactyly can be caused by various changes to 7q. When 7q is altered by a deletion or a translocation ectrodactyly can sometimes be associated with hearing loss. Ectrodactyly, or Split hand/split foot malformation (SHFM) type 1 is the only form of split hand/ malformation associated with sensorineural hearing loss.