Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Hyperandrogenism affects 5-10% of females of reproductive age. Hyperandrogenism can affect both males and females, but is more noticeable in females due to the fact that elevated levels of androgens in females often facilitates virilization. Due to the fact that hyperandrogenism is characterized by the elevation of male sex hormone levels, symptoms of hyperandrogenism in men are often negligible. Hyperandrogenism in females is typically diagnosed in late adolescence with a medical evaluation. The medical evaluation tends to consist of a pelvic exam, observation of external symptoms, and a blood test measuring androgen levels.
Hyperandrogenism, especially high levels of testosterone, can cause serious adverse effects on women’s bodies if left untreated. High testosterone levels have been seen to be associated with obesity, hypertension, amenorrhea(stop of menstrual cycles), and ovulatory dysfunction, which can lead to infertility. The more prominent signs of hyperandrogenism are hirsutism (unwanted growth of hair especially in the abdominal region and places on the back), acne after adolescence, deepening of voice, and alopecia(balding). Hyperandrogenism has also been seen to cause individuals to have a high tolerance to insulin, which can lead to type two diabetes, and dyslipidemia, such as high cholesterol. These effects have also been seen to have a large psychological impact on the individual, sometimes often leading to societal anxiety and depression, especially in adolescent girls and young women. Paired with obesity and hirsutism, it can cause the individual to have low self-esteem, and a poor view of oneself.
The symptoms of isolated 17,20-lyase deficiency, in males, include pseudohermaphroditism (i.e., feminized, ambiguous, or mildly underdeveloped (e.g., micropenis, perineal hypospadias, and/or cryptorchidism (undescended testes)) external genitalia), female gender identity, and, in non-complete cases of deficiency where partial virilization occurs, gynecomastia up to Tanner stage V (due to low androgen levels, which results in a lack of suppression of estrogen); in females, amenorrhoea or, in cases of only partial deficiency, merely irregular menses, and enlarged cystic ovaries (due to excessive stimulation by high levels of gonadotropins); and in both sexes, hypergonadotropic hypogonadism (hypogonadism despite high levels of gonadotropins), delayed, impaired, or fully absent adrenarche and puberty with an associated reduction in or complete lack of development of secondary sexual characteristics (sexual infantilism), impaired fertility or complete sterility, tall stature (due to delayed epiphyseal closure), eunuchoid skeletal proportions, delayed or absent bone maturation, and osteoporosis.
Isolated 17,20-lyase deficiency (ILD), also called isolated 17,20-desmolase deficiency, is a rare endocrine and autosomal recessive genetic disorder which is characterized by a complete or partial loss of 17,20-lyase activity and, in turn, impaired production of the androgen and estrogen sex steroids. The condition manifests itself as pseudohermaphroditism (partially or fully underdeveloped genitalia) in males, in whom it is considered to be a form of intersex, and, in both sexes, as a reduced or absent puberty/lack of development of secondary sexual characteristics, resulting in a somewhat childlike appearance in adulthood (if left untreated).
Unlike the case of combined 17α-hydroxylase/17,20-lyase deficiency, isolated 17,20-lyase deficiency does not affect glucocorticoid production (or mineralocorticoid levels), and for that reason, does not result in adrenal hyperplasia or hypertension.
The sex steroid consequences of severe 3β-HSD CAH are unique among the congenital adrenal hyperplasias: it is the only form of CAH that can produce ambiguity in both sexes. As with 21-hydroxylase deficient CAH, the degree of severity can determine the magnitude of over- or undervirilization.
In an XX (genetically female) fetus, elevated amounts of DHEA can produce moderate virilization by conversion in the liver to testosterone. Virilization of genetic females is partial, often mild, and rarely raises assignment questions. The issues surrounding corrective surgery of the virilized female genitalia are the same as for moderate 21-hydroxylase deficiency but surgery is rarely considered desirable.
The extent to which mild 3β-HSD CAH can cause early appearance of pubic hair and other aspects of hyperandrogenism in later childhood or adolescence is unsettled. Early reports about 20 years ago suggesting that mild forms of 3β-HSD CAH comprised significant proportions of girls with premature pubic hair or older women with hirsutism have not been confirmed and it now appears that premature pubarche in childhood and hirsutism after adolescence are not common manifestations of 3β-HSD CAH.
Undervirilization of genetic males with 3β-HSD CAH occurs because synthesis of testosterone is impaired in both adrenals and testes. Although DHEA is elevated, it is a weak androgen and too little testosterone is produced in the liver to offset the deficiency of testicular testosterone. The degree of undervirilization is more variable, from mild to severe. Management issues are those of an undervirilized male with normal sensitivity to testosterone.
If the infant boy is only mildly undervirilized, the hypospadias can be surgically repaired, testes brought into the scrotum, and testosterone supplied at puberty.
Management decisions are more difficult for a moderately or severely undervirilized genetic male whose testes are in the abdomen and whose genitalia look at least as much female as male. Male sex can assigned and major reconstructive surgery done to close the midline of the perineum and move the testes into a constructed scrotum. Female sex can be assigned and the testes removed and vagina enlarged surgically. A recently advocated third choice would be to assign either sex and defer surgery to adolescence. Each approach carries its own disadvantages and risks. Children and their families are different enough that none of the courses is appropriate for all.
The mineralocorticoid aspect of severe 3β-HSD CAH is similar to those of 21-hydroxylase deficiency. Like other enzymes involved in early stages of both aldosterone and cortisol synthesis, the severe form of 3β-HSD deficiency can result in life-threatening salt-wasting in early infancy. Salt-wasting is managed acutely with saline and high-dose hydrocortisone, and long-term fludrocortisone.
Symptoms of galactorrhea hyperprolactinemia include a high blood prolactin level, abnormal milk production in the breast, galactorrhea, menstrual abnormalities, reduced libido, reduced fertility, puberty problems, and headaches.
Galactorrhea hyperprolactinemia is increased blood prolactin levels associated with galactorrhea (abnormal milk secretion). It may be caused by such things as certain medications, pituitary disorders and thyroid disorders. The condition can occur in males as well as females. Relatively common etiologies include prolactinoma, medication effect, kidney failure, granulomatous diseases of the pituitary gland, and disorders which interfere with the hypothalamic inhibition of prolactin release. Ectopic (non-pituitary) production of prolactin may also occur. Galactorrhea hyperprolactinemia is listed as a “rare disease” by the Office of Rare Diseases of the National Institutes of Health. This means that it affects less than 200,000 people in the United States population.
An individual with this condition is hormonally normal; that is, the person will enter puberty with development of secondary sexual characteristics including thelarche and adrenarche (pubic hair). The person's chromosome constellation will be 46,XX. At least one ovary is intact, if not both, and ovulation usually occurs. Typically, the vagina is shortened and intercourse may, in some cases, be difficult and painful. Medical examination supported by gynecologic ultrasonography demonstrates a complete or partial absence of the cervix, uterus, and vagina.
If there is no uterus, a person with MRKH cannot carry a pregnancy without intervention. It is possible for the person to have genetic offspring by in vitro fertilization (IVF) and surrogacy. Successful uterine transplant has been performed in limited numbers of patients, resulting in several live births, but the technique is not widespread or accessible to many women.
A person with MRKH typically discovers the condition when, during puberty years, the menstrual cycle does not start (primary amenorrhoea). Some find out earlier through surgeries for other conditions, such as a hernia.
Because both the Wolffian ducts and Müllerian ducts begin to develop, the tissues are often intertwined, resulting in obstruction or nonpatency of the vas deferens or other parts of the reproductive excretory ducts. This can result in infertility, the most serious potential problem caused by this condition. Sometimes, transverse testicular ectopia is evident.
Cryptorchidism in AMH deficiency suggests that AMH may play a role in transabdominal testicular descent, perhaps by facilitating contraction of the gubernaculum.
Other Müllerian derivatives which may be present in at least a rudimentary form are the cervix, upper part of the vagina, and fallopian tubes.
The condition can come to attention because of a bulge in the inguinal canal of an XY infant due to herniation of the uterus. The presence of a uterus may be noticed if an ultrasound or MRI of the pelvis is performed to locate the testes or for other reasons. Occasionally the uterus is discovered during abdominal surgery for some other purpose in later childhood or adult life.
Although persistent Müllerian duct syndrome is classified as an intersex condition, it does not involve ambiguity or malformation of the external genitalia, which appear typical (apart from cryptorchidism if present). Sometimes the uterus enters a hernia. Sometimes the Müllerian structures get entangled with the spermatic ducts and interfere with the descent of the testes.
Apart from humans, this syndrome has been reported in dogs.
Persistent Müllerian duct syndrome (PMDS) is the presence of Müllerian duct derivatives (fallopian tubes, uterus, and/or the upper part of the vagina) in what would be considered a genetically and otherwise physically normal male animal by typical human based standards. In humans, PMDS typically is due to an autosomal recessive congenital disorder and is considered by some to be a form of pseudohermaphroditism due to the presence of Müllerian derivatives.
Typical features include undescended testes (cryptorchidism) and the presence of a small, underdeveloped uterus in an XY infant or adult. This condition is usually caused by deficiency of fetal anti-Müllerian hormone (AMH) effect due to mutations of the gene for AMH or the anti-Müllerian hormone receptor, but may also be as a result of insensitivity to AMH of the target organ.
Müllerian agenesis or müllerian aplasia, Mayer–Rokitansky–Küster–Hauser syndrome, or vaginal agenesis is a congenital malformation characterized by a failure of the Müllerian duct to develop, resulting in a missing uterus and variable degrees of vaginal hypoplasia of its upper portion. Müllerian agenesis (including absence of the uterus, cervix and/or vagina) is the cause in 15% of cases of primary amenorrhoea. Because most of the vagina does not develop from the Müllerian duct, instead developing from the urogenital sinus along with the bladder and urethra, it is present even when the Müllerian duct is completely absent.
Because ovaries do not develop from the Müllerian ducts, affected women might have normal secondary sexual characteristics but are infertile due to the lack of a functional uterus. However, motherhood is possible through use of gestational surrogates. Mayer-Rokitansky-Küster-Hauser syndrome (MRKH) is hypothesized to be a result of autosomal dominant inheritance with incomplete penetrance and variable expressivity, which contributes to the complexity involved in identifying of the underlying mechanisms causing the condition. Because of the variance in inheritance, penetrance and expressivity patterns, MRKH is subdivided into two types: type 1, in which only the structures developing from the Müllerian duct are affected (the upper vagina, cervix, and uterus), and type 2, where the same structures are affected, but is characterized by the additional malformations of other body systems most often including the renal and skeletal systems. MRKH type 2 includes MURCS (Müllerian Renal Cervical Somite). The majority of MRKH syndrome cases are characterized as sporadic, but familial cases have provided evidence that, at least for some patients, MRKH is an inherited disorder. The underlying causes of MRKH syndrome is still being investigated, but several causative genes have been studied for their possible association with the syndrome. Most of these studies have served to rule-out genes as causative factors in MRKH, but thus far, only WNT4 has been associated with MRKH with hyperandrogenism.
The medical eponym honors August Franz Josef Karl Mayer (1787–1865), Carl Freiherr von Rokitansky (1804–1878), Hermann Küster (1879–1964), and Georges Andre Hauser (1921–2009).
Persistent adrenarche syndrome (also known as "Adrenal SAHA syndrome") is a cutaneous condition seen typically in thin young women who report great psychological and physical stress in their lives.
Some or all of the following symptoms may be present, though it is possible not to experience any symptoms:
- Abdominal pain. Dull aching pain within the abdomen or pelvis, especially during intercourse.
- Uterine bleeding. Pain during or shortly after beginning or end of menstrual period; irregular periods, or abnormal uterine bleeding or spotting.
- Fullness, heaviness, pressure, swelling, or bloating in the abdomen.
- When a cyst ruptures from the ovary, there may be sudden and sharp pain in the lower abdomen on one side.
- Change in frequency or ease of urination (such as inability to fully empty the bladder), or difficulty with bowel movements due to pressure on adjacent pelvic anatomy.
- Constitutional symptoms such as fatigue, headaches
- Nausea or vomiting
- Weight gain
Other symptoms may depend on the cause of the cysts:
- Symptoms that may occur if the cause of the cysts is polycystic ovarian syndrome (PCOS) may include increased facial hair or body hair, acne, obesity and infertility.
- If the cause is endometriosis, then periods may be heavy, and intercourse painful.
The effect of cysts not related to PCOS on fertility is unclear.
There are several aspects of PWS that support the concept of growth hormone deficiency in individuals with PWS. Specifically, individuals with PWS have short stature, are obese with abnormal body composition, have reduced fat free mass (FFM), have reduced lean body mass (LBM) and total energy expenditure, and have decreased bone density.
PWS is characterized by hypogonadism. This is manifested as undescended testes in males and benign premature adrenarche in females. Testes may descend with time or can be managed with surgery or testosterone replacement. Adrenarche may be treated with hormone replacement therapy.
In juvenile hypothyroidism multicystic ovaries are present in about 75% of cases, while large ovarian cysts and elevated ovarian tumor marks are one of the symptoms of the Van Wyk and Grumbach syndrome.
The CA-125 marker in children and adolescents can be frequently elevated even in absence of malignancy and conservative management should be considered.
Polycystic ovarian syndrome involves the development of multiple small cysts in both ovaries due to an elevated ratio of leutenizing hormone to follicle stimulating hormone, typically more than 25 cysts in each ovary, or an ovarian volume of greater than 10 mL.
Larger bilateral cysts can develop as a result of fertility treatment due to elevated levels of HCG, as can be seen with the use of clomifene for follicular induction, in extreme cases resulting in a condition known as ovarian hyperstimulation syndrome. Certain malignancies can mimic the effects of clomifene on the ovaries, also due to increased HCG, in particular gestational trophoblastic disease. Ovarian hyperstimulation occurs more often with invasive moles and choriocarcinoma than complete molar pregnancies.
Physical arousal caused by this syndrome can be very intense and persist for extended periods, days or weeks at a time. Orgasm can sometimes provide temporary relief, but within hours the symptoms return. The return of symptoms, with the exception of known triggers, is sudden and unpredictable. Failure or refusal to relieve the symptoms often results in waves of spontaneous orgasms in women and ejaculation in men. The symptoms can be debilitating, preventing concentration on mundane tasks. Some situations, such as riding in an automobile or train, vibrations from mobile phones, and even going to the toilet can aggravate the syndrome unbearably causing the discomfort to verge on pain. It is not uncommon for sufferers to lose some or all sense of pleasure over the course of time as release becomes associated with relief from pain rather than the experience of pleasure. Some sufferers have said that they shun sexual relations, which they may find to be a painful experience. The condition may last for many years and can be so severe that it has been known to lead to depression and even suicide.
A Dutch study has connected PGAD with restless legs syndrome.
There is not enough known about persistent genital arousal disorder to definitively pinpoint a cause. Medical professionals think it is caused by an irregularity in sensory nerves, and note that the disorder has a tendency to strike post-menopausal women, or those who have undergone hormonal treatment.
Prader–Willi syndrome is frequently associated with a constant, extreme, ravenous insatiable appetite which persists no matter how much the patient eats, often resulting in morbid obesity. Caregivers need to strictly limit the patients' access to food, usually by installing locks on refrigerators and on all closets and cabinets where food is stored. It is the most common genetic cause of morbid obesity in children. There is currently no consensus as to the cause for this symptom, although genetic abnormalities in chromosome 15 disrupt the normal functioning of the hypothalamus. Given that the hypothalamus arcuate nucleus regulates many basic processes, including appetite, there may well be a link. In the hypothalamus of people with PWS, nerve cells that produce oxytocin, a hormone thought to contribute to satiety, have been found to be abnormal.
People with Prader–Willi syndrome have high ghrelin levels, which are thought to directly contribute to the increased appetite, hyperphagia, and obesity seen in this syndrome. Cassidy states the need for a clear delineation of behavioral expectations, the reinforcement of behavioural limits and the establishment of regular routines.
The main mental health difficulties experienced by people with PWS include compulsive behaviour (usually manifested in skin picking) and anxiety. Psychiatric symptoms, for example, hallucinations, paranoia and depression, have been described in some cases and affect approximately 5–10% of young adults. Patients are also often extremely stubborn and prone to anger. Psychiatric and behavioural problems are the most common cause of hospitalization.
It is typical for to 70–90% of affected individuals to develop behavioral patterns in early childhood. Aspects of these patterns can include stubbornness, temper tantrums, controlling and manipulative behavior, difficulty with change in routine, and compulsive-like behaviors.
Children with Liddle syndrome are frequently asymptomatic. The first indication of the syndrome often is the incidental finding of hypertension during a routine physical exam. Because this syndrome is rare, it may only be considered by the treating physician after the child's hypertension does not respond to medications for lowering blood pressure.
Adults could present with nonspecific symptoms of low blood potassium, which can include weakness, fatigue, palpitations or muscular weakness (shortness of breath, constipation/abdominal distention or exercise intolerance). Additionally, long-standing hypertension could become symptomatic.
Liddle's syndrome, also called Liddle syndrome is a genetic disorder inherited in an autosomal dominant manner that is characterized by early, and frequently severe, high blood pressure associated with low plasma renin activity, metabolic alkalosis, low blood potassium, and normal to low levels of aldosterone. Liddle syndrome involves abnormal kidney function, with excess reabsorption of sodium and loss of potassium from the renal tubule, and is treated with a combination of low sodium diet and potassium-sparing diuretic drugs (e.g. amiloride). It is extremely rare, with fewer than 30 pedigrees or isolated cases having been reported worldwide as of 2008.
Patterson syndrome is characterized by the patient's having an unusual facial look, similar to that caused by Leprechaunism. It primarily affects the connective tissue and the neuroendocrine system, giving rise to bronzed hyperpigmentation, cutis laxa of the hands and feet, bodily disproportion, severe mental retardation, and major bony deformities. Radiographs reveal a characteristic generalised skeletal dysplasia.
It comprises endocrine abnormality, hyperadrenocorticism, cushingoid features, and diabetes mellitus. One other case has shown premature adrenarche.
Hypoglycemia in early infancy can cause jitteriness, lethargy, unresponsiveness, or seizures. The most severe forms may cause macrosomia in utero, producing a large birth weight, often accompanied by abnormality of the pancreas. Milder hypoglycemia in infancy causes hunger every few hours, with increasing jitteriness or lethargy. Milder forms have occasionally been detected by investigation of family members of infants with severe forms, adults with the mildest degrees of congenital hyperinsulinism have a decreased tolerance for prolonged fasting. Other presentations are:
The variable ages of presentations and courses suggest that some forms of congenital hyperinsulinism, especially those involving abnormalities of K channel function, can worsen or improve with time the potential harm from hyperinsulinemic hypoglycemia depends on the severity, and duration. Children who have recurrent hyperinsulinemic hypoglycemia in infancy can suffer harm to the brain
Idiopathic pure sudomotor failure (IPSF) is the most common cause of a rare disorder known as acquired idiopathic generalized anhidrosis (AIGA), a clinical syndrome characterized by generalized decrease or absence of sweating without other autonomic and somatic nervous dysfunctions and without persistent organic cutaneous lesions.
The term IPSF was first introduced in 1994 after researchers at Saitama Medical School speculated the primary lesion sites in patients were within cholinergic receptors of the sweat glands. The term IPSF represent a distinct subgroup of AIGA without sudomotor neuropathy or sweat gland failure.
The differential diagnosis of congenital hyperinsulinism is consistent with PMM2-CDG, as well as several syndromes. Among other DDx we find the following that are listed:
- MPI-CDG
- Beckwith-Wiedemann syndrome
- Sotos syndrome
- Usher 1 syndromes